1. Trang chủ
  2. » Giáo án - Bài giảng

Chủ đề 06 bài toán tính quãng đường 29 trang

33 102 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 2,74 MB

Nội dung

CHỦ ĐỀ 6: BÀI TỐN TÍNH QNG ĐƯỜNG  Dạng 1: Tính quãng đường vật khoảng thời gian cho trước  Xét tốn: Cho phương trình dao động vật x  A cos  t    Quãng đường vật khoảng thời gian từ t1 đến t2  Phương pháp giải: Sau chu kỳ T, vật xuất phát đâu, vật trở vị trí cũ quãng đường 4A, vật qua vị trí lần tính cho chiều chuyển động - Bước 1: Tính khoảng thời gian Vt  t2  t1 - Bước 2: Tính Vt T ) suy Vt  nT Vt � ( Vt � T - Bước 3:  quãng đường vật S = n.4A +) Nếu phép chia hết tức Vt � +) Nếu phép chia có dư: T � � � �là quãng đường vật khoảng thời gian Vt � �  Vt � � S�  2A  S� TH1: Vt � ( S � ) � suy S  n.4 A  A  S � T �  S  n.4 A  S � TH2: Vt � ( S �là quãng đường vật khoảng thời gian Vt � ) +) Thay t  t1 suy 1 để tìm trạng thái  x1 ; v1  vật đường tròn lượng giác trục thời gian +) Thay t  t suy  để tìm trạng thái  x1 ; v1  vật đường tròn lượng giác trục thời gian  St1 �t2 Biểu diễn đường tròn lượng giác trục thời gian để tìm S � Đặc biệt: T +) Quãng đường vật khoảng thời gian n (n ��*) s = n.2A T +) Khi vật vị trí cân biên sau khoảng thời gian n ( n ��*) vật quãng đường s = n.A Ví dụ 1: [Trích đề thi đại học năm 2014] Một vật dao động điều hịa với phương trình x  5cos t (cm) Qng đường vật chu kì A 10 cm B cm C 15 cm D 20 cm Lời giải Ta có: S = 4A = 20 cm Chọn D Ví dụ 2: [Trích đề thi đại học năm 2013] Một vật dao động điều hòa với biên độ cm chu kì s Quãng đường vật s A 64 cm B 16 cm C 32 cm D cm Lời giải Trong s = 2T vật quãng đường s = 2.4A = 32 cm Chọn C � � 4 t  �(cm) Từ thời Ví dụ 3: Một vật dao động điều hịa dọc theo trục Ox với phương trình x  cos � 3� � 43 điểm ban đầu đến thời điểm t  s , quãng đường vật 12 A 114 cm B 116 cm C 117,5 cm D 115,5 cm Lời giải 2 Vt T  0,5s Mặt khác   �Vt  7T  Ta có: T   T 6 Do đó: S  7.4 A  S � �x  2cm  Tại thời điểm ban đầu   � � v0 � T  4cm vật từ vị trí có li độ x  � x  2 � S � Do đó: S = 28.4 + = 116 cm Chọn B Trong thời gian 5 � � 20 t  Ví dụ 4: Một vật dao động điều hịa với phương trình x  cos � �cm Tính độ dài quãng đường � � mà vật thời gian từ t1  5s đến t2  6,325s A 213,46 cm B 209,46 cm C 206,53 cm Lời giải D 208,53 cm 2 Vt T  0,1s;  13  �Vt  13T   T 4 �x  2 5 �� Tại thời điểm t1  5s � 1   v0 � � 5 � � 20 6,325  �x2  cos � � � Tại thời điểm t2 � � � � v0 � Ta có: T  Suy S  13.4 A    213, 46cm Chọn A �4 t � Ví dụ 5: Một vật dao động điều hịa với phương trình x  10 cos � �(cm) Quãng đường vật �3 � khoảng thời gian Vt  38,5s kể từ vật bắt đầu chuyển động A 10,4 m B 10,35 m C 10,3 m D 10,25 m Lời giải Ta có: T  2 Vt 2T  1,5s;  25  �Vt  25T   T 3 Tại thời điểm ban đầu x = A = 10 cm � 5 � 20 6,325  �x2  cos � Tại thời điểm t2 � � � � v0 � � � 5 � Suy S = 25.4A + 2A + = 1025 cm Chọn D Ví dụ 6: Một vật dao động điều hòa với biên độ A = cm gia tốc cực đại 96 2cm / s Tại thời điểm ban đầu vật vị trí có li độ x = -3cm chuyển động theo chiều dương Quãng đường vật khoảng thời gian 4,6 s A 221 cm B 222 cm C 223 cm D 224 cm Lời giải amax Vt T �   4 � T  0,5s �   �Vt  9T  A T 5 T 2 Góc quét sau khoảng thời gian 5 2 2 2 4 � 2    Tại thời điểm ban đầu 1  3 15 Ta có:   �x2  4, 015 � S  9.4 A  4, 015   223cm Chọn C Do � v0 � Ví dụ 7: Một vật dao động điều hòa xung quanh vị trí cân O Ban đầu vật qua O theo chiều dương Sau thời gian t1  0, s vật chưa đổi chiều chuyển động vận tốc lại nửa Sau thời gian t2  0, s vật 20 cm Vận tốc ban đầu v0 vật A 72,55 cm/s B 36,27 cm/s C 20,94 cm/s D 41,89 cm/s Lời giải Thời gian vận tốc vật từ v  vmax A T �x �t t A  0� 2 T  0, � T  1, 2s 7T T T A   � S  A   20 � A  8cm Khi t2  12 12 Suy Suy A  8;   2 5 40  � v0  vmax   41,89  cm / s  Chọn D T 3 3 � 5 t  Ví dụ 8: Một vật dao động điều hịa với phương trình x  cos � � từ thời điểm t1  s đến t2  s 10 A 331,4 cm B 360 cm C 337,5 cm Lời giải Ta có: T  � �cm Quãng đường vật � D 333,8 cm 2  0, s  Vt T T T  14, 75 suy Vt  14T  T  14 T   T 8 �x  4cm  �� Tại thời điểm t1 , vật có: 1  v0 � Lại có: �x  4 Tại thời điểm t2 , vật có: � v0 � � A � Dựa vào hình vẽ ta có: S  14.4 A  A  �A  � 331, 4cm Chọn A 2� � Ví dụ 9: [Chuyên Quốc Học Huế năm 2017] Một chất điểm dao động điều hòa trục Ox xung quanh gốc O với biên độ cm chu kì s Mốc để tính thời gian vật qua vị trí x = cm theo chiều dương Khoảng thời gian để chất điểm quãng đường 249 cm kể từ thời điểm ban đầu 62 125 61 127 s s s s A B C D 6 Lời giải A Ta có: S  10.4 A  A  Dựa vào trục thời gian suy ra: Vt  10 T  T T 125   s Chọn B 6 � 2 � t  cm Trong giây vật Ví dụ 10: Một vật dao động điều hịa theo phương trình x  cos � � � � quãng đường cm Hỏi giây thứ 2013 vật quãng đường bao nhiêu? A cm B cm C cm D 12 cm Lời giải Sử dụng đường tròn lượng giác: Ban đầu vật M � 1s đầu ứng với   2 �   2 rad s � T  3s Quãng đường vật giây thứ 2013: VS 2013  S 2013  S 2012 Ta có: 2012 s  671T  T � 671 vòng - 2 � M 2012 2013  s 671T M 2013 M �VS 2013  S 2013  S 2012    4cm Chọn B � 2 � t  cm Trong giây vật Ví dụ 11: Một vật dao động điều hịa theo phương trình x  cos � � � � quãng đường cm Gọi x, y quãng đường vật giây thứ 2015 giây thứ 2017 Chọn phương án A x  y  6cm B x  y  3cm C x  y  9cm Lời giải D x  y  6cm Sử dụng đường tròn lượng giác Ban đầu vật M � 1s đầu ứng với   2 �   2 rad s � T  3s Ta có: 2014 s  671T  T � 671 vòng + 2 � M 2014 Cứ khoảng 1s vật quay 2 rad � M 2015 , M 2016 , M 2017 Qđ giây thứ 2015: x  S 2015  S 2014  6cm Qđ giây thứ 2017: y  S 2017  S 2016  6cm � x  y  6cm thỏa mãn Chọn A � � t  � cm Trong giây vật Ví dụ 12: Một vật dao động điều hịa theo phương trình x  12 cos � 3� �   quãng đường 18  cm Gọi x, y quãng đường vật giây thứ 2015 giây thứ 2016 Chọn phương án A x  y  6cm B x  y  3cm C x  y  32, 78cm Lời giải Ban đầu vật M , 1s đầu có s  18  3cm ứng với   � T  � T  s Tách 2014s  503T  T � M 2014 D x  y  24cm   � M 2015 , M 2016 Qđ giây thứ 2015: x  S 2015  S2014  18  3cm Do khoảng 1s vật quay góc Qđ giây thứ 2016: x  S 2016  S 2015   3cm � x  y  24cm thỏa mãn Chọn D Ví dụ 13: Một dao động điều hịa có tần số f = Hz Gọi t1 , t2 , t3 ba thời điểm vật có gia tốc a1 , a2 , a3 Biết a1   a2   a3  20 m / s  t2  t1    t3  t  Quãng đường ngắn vật từ t1 đến t3 A 25 cm B 10 cm C 20 cm Lời giải Ta có: x1   a1 20   0, 0625 3m  6, 25 3cm 2   2  � x1   x2   x3  6, 25 3cm +) thời điểm t1 , t2 , t3 không cho liên tiếp nên xảy trường hợp: x1 theo chiều dương M x1 theo chiều âm M 1� Để quãng đường t1 đến t3 ngắn � x1 ứng với trạng thái M +) Do  t2  t1    t3  t  � Cung M M  M M Mặt khác cung M 1M  M 1M  M M   � cung M M   D 10 cm Thời gian vật Vt  t�A � A � T  T 7T T   6 Tốc độ trung bình vật vtb  S  27cm / s Chọn C Vt � �2 � � Ví dụ 3: Một chất điểm dao động điều hòa trục Ox có vận tốc thời điểm liên tiếp t1  1, 75s t2  2,55s , tốc độ trung bình khoảng thời gian 16 cm/s Tọa độ chất điểm thời điểm t = A cm B -8 cm C -4 cm D -3 cm Lời giải Vận tốc vật hai biên ta có: T  t2  t1  0, 75 � T  1,5s S 2A  16cm / s �  16 � A  6cm Vt 0, 75 T Lại có: t1  T  Giả sử thời điểm t1 vật biên dương Mặt khác vtb  Khi thời điểm ban đầu vật li độ x0  Suy xo  3 xo  Chọn D A A , vật t1 vật biên âm x0   2 Ví dụ 4: Một chất điểm dao động điều hịa trục Ox Tốc độ trung bình chất điểm tương ứng với khoảng thời gian không vượt lần động nửa chu kỳ 300 3cm / s Tốc độ cực đại dao động A 400 cm/s B 200 cm/s C 2 m/s Lời giải D 4 m/s A Ta có vị trí: Wt  3Wd � x  � Tốc độ trung bình tương ứng với khoảng thời gian không vượt ba lần động nửa A 2  3 A  3vmax  300 chu kỳ v  T T 2 2  6 Do đó: vmax  200 cm / s Chọn C Ví dụ 5: Một vật dao động điều hòa với biên độ A = 12 cm chu kì T = 0,4s Tốc độ trung bình lớn vật khoảng thời gian Vt  s 15 A 1,8 m/s B 1,5 m/s C 2,1 m/s Lời giải D 1,2 m/s Tốc độ lớn quãng đường vật thời gian lớn T T A Ta có: Vt  s   � S max   A  12cm 15 12 12  180cm / s Chọn A Do đó: vmax  15 Ví dụ 6: Một chất điểm dao động điều hịa trục Ox có vận tốc hai thời điểm liên tiếp t1  1, 625s t2  2,375s tốc độ trung bình khoảng thời gian 16 cm/s Ở thời điểm t = 0, vận tốc v0 cm / s li độ x0 cm vật thỏa mãn hệ thức: A x0v0  12 B x0 v0  12 C x0 v0  4 Lời giải D x0 v0  4 T  t2  t1  0, 75 � T  1,5s S 2A v   16 � A  6cm T Tốc độ trung bình vật khoảng thời gian 0, 75 � A x0  � T � Mặt khác t1  T  vật biên âm 12 � vmax v0  � � � A x0  � � Nếu thời điểm t1 vật biên dương � vmax v0  � � v A  A2 2 A2 Do x0 v0  max    12 Chọn A 4 T Ta có: Vận tốc vật biên Khi Ví dụ 7: [Trích đề thi đại học năm 2010] Một chất điểm dao động điều hịa với chu kì T Trong khoảng A thời gian ngắn từ vị trí biên có li độ x = A đến vị trí x  , chất điểm có tốc độ trung bình 3A 6A 4A 9A A B C D 2T T T 2T Lời giải Thời gian ngắn vật từ vị trí biên có li độ x = A đến vị trí x  Vt  t�  A� �A�0 � � 2� � A T T T   12 3A 3A S 9A �v    Chọn D Quãng đường vật S  Vt T 2T Ví dụ 8: [Trích đề thi đại học năm 2012] Một chất điểm dao động điều hịa với chu kì T Gọi vTB tốc độ trung bình chất điểm chu kì, v tốc độ tức thời chất điểm Trong chu kì, khoảng  thời gian mà v � vTB 2T T T T A B C D 3 Lời giải  Ta có: vTB ۳ 4A T v 2  2vmax  4A 2  �x � � v � Lạicó: � � � � �2 � �vmax � Do Vt  4.t� A 0� � � � 4 3� � � � v  vTB  v vmax x vmax A T 2T  Chọn A Ví dụ 9: [Trích đề thi thử chun Vĩnh Phúc 2017] Một lắc lị xo có chiều dài tự nhiên l o  30cm treo thẳng đứng, đầu lị xo treo vật có khối lượng m Từ vị trí cân O vật kéo vật thẳng đứng xuống 10 cm thả nhẹ không vận tốc ban đầu Gọi B vị trí thả vật, M trung điểm OB tốc độ trung bình vật từ O đến M tốc độ trung bình vật từ M đến B có hiệu 50 cm/s Lấy g  10m / s Khi lò xo có chiều dài 34 cm tốc độ vật có giá trị xấp xỉ A 42 cm/s B C 105 cm/s Lời giải D 91 cm/s A 3A Tốc độ trung bình đoạn đường BM vBM   T T A 6A Tốc độ trung bình đoạn đường OM vOM   T T 12 3A 10 g vOM  vBM   50 � T  �   �Vl   9cm T  A A Khi lò xo dài 34 cm suy x  5cm  �v   90, 69cm / s Chọn D 2 Ví dụ 10: Một vật dao động với biên độ 10 cm, chu kì dao động thời gian vật có tốc độ lớn giá trị v0 1s Tốc độ trung bình chiều vị trí có tốc độ v0 24 cm/s Tính v0 A 20,59 cm/s B 50,94 cm/s C 18,14 cm/s D 20,94 cm/s Lời giải Giả sử vật có vận tốc v0 li độ x0 Khi đó: thời gian vật có tốc độ lớn giá trị v0 thời gian vật có li độ nhỏ x0 x0 x � x0   cm  arcsin o  1 1 Lại có: 24  0,5  10 2 Do arcsin  �   2,574 � v0   A  x  20,59cm / s Chọn D  10 Ta có: Vt  Ví dụ 11: Một chất điểm dao động điều hòa trục Ox, gia tốc vật có độ lớn cực đại thời điểm liên tiếp t1  0,1875s t2  0,3125s Vận tốc trung bình khoảng thời gian -160 cm/s Phương trình li độ vật � � � � 8 t  � cm 4 t  � cm A x  10 cos � B x  5cos � 2� 2� � � C x  10 cos 4 t cm � � 8 t  � cm D x  10 cos � 2� � Lời giải vị trí độ lớn a max biên: T  0,3125  0,1875  0,125 � T  0, 25s �   8 rad / s A  A x x  160 � A  10cm Vận tốc trung bình: vtb   160  � x2   A; x1  A 0,125 Vt Do t1  0,1875s  3T biên dương � vị trí thời điểm ban đầu: xo  theo chiều âm �    � x  10 cos  8 t    cm Chọn A Ví dụ 12: Một vật dao động điều hòa với biên độ A, vào thời điểm t = 0, vật qua VTCB theo chiều dương A Đến thời điểm t = 43s vật qua vị trí có li độ lần thứ 30 Tốc độ trung bình khoảng thời gian 6,203 cm/s Tính gia tốc cực đại A 44, 6cm / s B 34, 6cm / s C 24, 6cm / s D 20,5cm / s Lời giải A lần Ta có: 30 lần = 14.2 lần + lần � 43s  14T Vt Thời gian Vt tương ứng với góc 2 hình �Vt  T T 2 � 43s  14T  � T  3s �   rad s 3 Quãng đường vật thời gian 43 s là: Một chu kỳ vật qua vị trí S  14.4 A  A  ( A  � 58 A  A A )  58 A   v.t 2 A  6, 203.43 � A  4, 67cm 2 �2 � � amax  A  4, 67 � � 20,5cm / s �3 � Chọn D BÀI TẬP TRẮC NGHIỆM � � t  � cm Thời gian tính từ lúc vật bắt Câu 1: Một vật dao động điều hòa với phương trình x  10 cos � � 3� đầu giao động (t=0) đến vật quãng đường 50cm là: A s B 2,4 s C s D 1,5 s Câu 2: Một vật dao động điều hòa, phút thực 30 dao động toàn phần Quãng đường mà vật di chuyển s 64 cm Biên độ dao động vật A cm B cm C cm D cm � � 4 t  � cm Quãng đường vật kể từ Câu 3: Một vật dao động điều hòa với phương trình x  cos � 3� � bắt đầu dao động (t = 0) đến thời điểm t = 0,5 (s) A S = 12 cm B S = 24 cm C S = 18cm D S = cm � � 4 t  � cm Quãng đường vật kể Câu 4: Một vật dao động điều hịa với phương trình x  cos � 3� � từ bắt đầu dao động (t = 0) đến thời điểm t = 0,25 (s) A S = 12 cm B S = 24 cm C S =18 cm D S = cm Câu 5: Vật dao động điều hòa theo phương trình x  5cos  10 t    cm Thời gian vật quãng đường S = 12,5 cm (kể từ t = 0) A s 15 B s 15 C s 30 D s 12 � � 20 t  � cm Tốc độ vật sau quãng Câu 6: Vật dao động điều hòa theo phương trình li độ x  4sin � 6� � đường s = cm (kể từ t = 0) A 69,3 cm/s B 80  cm/s C 80 cm/s D cm/s Câu 7: Chọn phương án sai Một vật nhỏ dao động điều hòa theo trục dọc theo trục Ox (O vị trí cân bằng) với biên độ A, chu kì T Quãng đường mà vật khoảng thời gian A T kể từ vật vị trí cân A B T kể từ vật vị trí mà tốc độ dao động triệt tiêu A C T 2A D T lớn A Câu 8: Vật dao động điều hòa với tần số f = 0,5 Hz Tại t = 0, vật có li độ x = 4cm vận tốc v  4 cm/s Quãng đường vật sau thời gian t = 2,25 s kể từ bắt đầu chuyển động A 25,94 cm/s B 26,34 cm/s C 24,34 cm/s D 30,63 cm/s � � x  A cos � 2 t  � cm Câu 9: Một vật dao động với phương trình � (t đo giây) Trong khoảng thời gian � 12s kể từ thời điểm ban đầu lắc quãng đường cm Biên độ dao động A cm B cm C cm � 2 t  Câu 10: Vật dao động điều hịa theo phương trình x  cos � � cm (kể từ thời điểm t = 0) A 7/4 s B 7/6 s C.7/3 s D cm � cm Thời gian vật quãng đường S = � � D.7/12 s � � t  � cm Khoảng thời gian tính từ lúc Câu 11: Một vật dao động điều hòa với phương trình x  10 cos � � 3� vật bắt đầu dao động (t = 0) đến vật quãng đường 50 cm A Vt   s  B Vt  2,  s  C Vt   s  D Vt  1,5  s   � � 2 t  � cm Quãng đường vật Câu 12: Một vật dao động điều hòa theo phương trình x  1, 25cos � 12 � � sau thời gian t = 2,5 (s) kể từ lúc bắt đầu dao động A 7,9 cm B 22,5 cm C 7,5 cm D 12,5 cm Câu 13: Một vật nhỏ dao động điều hồ dọc theo trục Ox có phương trình dao động x  3cos  3 t  cm đường mà vật từ thời điểm ban đầu đến thời điểm (s) A 24 cm B 54 cm C 36 cm D 12 cm � � cm Trong Câu 14: Một chất điểm dao động điều hịa trục Ox có phương trình x  cos �4 t  � 2� � 1,125 (s) vật quãng đường A 32 cm B 36 cm C 48 cm D 24 cm Câu 15: Một lắc lò xo dao động với phương trình x  4cos  4 t  cm Quãng đường vật thời gian 2,875 (s) kể từ lúc t = A 16 cm B 32 cm C 64 cm 3 � 25t  Câu 16: Một vật dao động có phương trình li độ x  cos � � điểm t1  D 92 cm � cm Quãng đường vật từ thời � �  s đến t2  s (lấy gần đúng) 30 A S = 43,6 cm B S = 43,02 cm C S = 10,9 cm D S = 42,56 cm Câu 17: Một vật dao động điều hòa xung quanh vị trí cân O Ban đầu vật qua O theo chiều dương  s vật chưa đổi chiều chuyển động vận tốc lại nửa Sau thời gian 15 t2  0,3 ( s ) vật 12 cm Vận tốc ban đầu vo vật Sau thời gian t1  A 20 cm/s B 25 cm/s C cm/s D 40 cm/s Câu 18: Một chất điểm dao động dọc theo trục Ox Phương trình dao động x  8cos  2 t    cm Sau t = 0,5 s, kể từ bắt đầu dao động, quãng đường S vật A cm B 12 cm C 16 cm D 20 cm � � 4 t  � cm Trong Câu 19: Một chất điểm dao động điều hịa trục Ox có phương trình x  cos � 2� � 1,125 s vật quãng đường A 32 cm B 36 cm C 48 cm D 24 cm � � 5 t  � cm Tính tốc độ trung bình vật Câu 20: Vật dao động điều hịa với phương trình x  5cos � 3� � khoảng thời gian từ t = đến t = 1s? A cm/s B -50 cm/s C -5 cm/s D 50 cm/s � � 10 t  � cm , với t Câu 21: Một chất điểm dao động điều hịa dọc theo trục Ox với phương trình x  cos � 3� � tính giây Trong khoảng thời gian 1/15 (s) kể từ lúc vật bắt đầu dao động vật quãng đường: A cm B 3cm C 2,412 cm D cm Câu 22: Một vật dao động điều hòa xung quanh vị trí cân O Ban đầu vật qua O theo chiều dương Đến thời điểm t = 1/3 s vật chưa đổi chiều chuyển động tốc độ lại 0,5 lần tốc độ ban đầu Đến thời điểm t = 5/3 s vật quãng đường cm Tốc độ cực đại vật A 2 cm/s B 3 cm/s C  cm/s D 4 cm/s Câu 23: Một vật dao động điều hịa , từ M có li độ x = -5 cm đến N có li độ x = +7 cm Vật tiếp 18 cm quay lại M đủ chu kì Biên độ dao động điều hòa A cm B 7,5 cm C cm D cm Câu 24: Một vật dao động điều hòa với biên độ A chu kì T Trong khoảng thời gian Vt  T , quãng đường lớn  S max  mà vật A A B A D 1,5A C A Câu 25: Một vật dao động điều hịa với biên độ A chu kì T Trong khoảng thời gian Vt  2T , quãng đường lớn  S max  mà vật A 1,5A B 2A D 3A C A Câu 26: Một vật dao động điều hòa với biên độ A chu kì T Trong khoảng thời gian Vt  5T , quãng đường lớn  S max  mà vật A A  A B A  A C A  A D A Câu 27: Một vật dao động điều hòa với biên độ A chu kì T Trong khoảng thời gian Vt  5T , quãng đường nhỏ  S  mà vật B A  A A A C A  A D 3A Câu 28: Một vật dao động điều hòa với biên độ A tần số f Trong khoảng thời gian ngắn để vật quãng đường có độ dài A 1 1 B Vt  C Vt  D Vt  6f 4f 3f 12 f Câu 29: Một vật dao động điều hòa với biên độ A tần số f Khoảng thời gian lớn để vật quãng đường có độ dài A A Vt  A Vt  6f B Vt  4f C Vt  3f D Vt  12 f � � 20 t  � Vận tốc Câu 30: Một chất điểm dao động điều hòa với phương trình dao động x  cos � 2� � trung bình chất điểm đoạn từ VTCB tới điểm có li độ cm A 360 cm/s B 120  cm/s C 60  cm/s D 40 cm/s � � 4 t  � cm Tính quãng đường lớn Câu 31: Một vật dao động điều hịa với phương trình x  cos � 3� � mà vật khoảng thời gian Vt  A 3cm B 3cm s C 3cm D 3cm Câu 32: Một vật dao động điều hịa với chu kì s, biên độ cm Tìm quãng đường dài vật khoảng thời gian A cm giây B 24 cm C 16  cm D 12 cm � � 2 t  � cm Quãng đường lớn vật Câu 33: Một vật dao động điều hịa với phương trình x  cos � 3� � khoảng thời gian A S max  12cm chu kì dao động (lấy gần đúng) B S max  10,92cm C S max  9, 07cm D Smax  10, 26cm Câu 34: Một vật dao động điều hòa với tần số f biên độ A Khi vật từ li độ x   A đến li độ x  A (đi qua biên x   A ), tốc độ trung bình vật 13 Af � � 5 t  � cm Tốc độ trung bình Câu 35: Một chất điểm dao động điều hịa với phương trình x  cos � 3� � vật ½ chu kì đầu A vtb  15 Af A 20 cm/s B vtb  Af B 20 cm/s C vtb  Af D vtb  C 40 cm/s D 40 cm/s LỜI GIẢI CHI TIẾT Câu 1: Ta có quãng đường S  50  A  A  A �V  2   A  � �x  10 cos  � vật vị trí có li độ vị trí cân Để Tại t = 0, ta có � � v0 � quãng đường 10 cm, vật quét góc  A   7 �V  �Vt  s Chọn A 3 Câu 2: Ta có T  �Vt   4.T  16 A  64 � A  4cm Chọn C 2  0, 5s Do chu kì đầu từ t = đến thời điểm t = 0,5 (s), vật di chuyển  Câu 3: Ta có T  quãng đường S  A  24  cm  Chọn B Câu 4: Ta có: T  2 T  0,5s Do thời gian vật quãng đường  S  A  12  cm  Chọn A Câu 5: Ta có quãng đường S  12,5  5A A  A  �V     A 2 �x  5.cos   5 A  � để quãng đường Tại t = 0, ta có � , vật quét góc Vậy tổng góc quét v0 � V     4 V 4  �Vt   :10  s Chọn B 3  15 � 2 � � � 20 t  � cm  cos � 20 t  cm Câu 6: Ta có x  4sin � � 6� � � � Mặt khác: S  2cm  A Sau vật quãng đường S = cm vật vị trí có li độ x = � Tốc độ vật vmax   A  80 cm / s Chọn B Câu 7: Quãng đường lớn vật thời gian Câu 8: T   2( s );   2 f    rad s  f Khi A  x  v2  2, 2 � A �x  Tại t = 0, ta có: � � v0 � Lại có t  T  T T 2A Chọn D � A � suy S  A  so  A  �A  � 25,94  cm  2� � Chọn A Câu 9: �x  Ta có: T = (s), thời điểm ban đầu � v0 � Mặt khác T T s   vật đến biên A sau 12 quay lại vị trí A suy � A� S  A  �A  � � A   cm  Chọn D � 2� Câu 10: Ta có quãng đường S   A  A  A �V  2   A � � 2  �x  cos � Tại thời điểm t = suy � � � v0 � � 1 �  � � vật vị trí có li độ  di chuyển vị trí cân nên để qng đường A góc qt  A   7 � tổng góc quét V  �Vt  s 3 Chọn C Câu 11: Thời gian để vật quãng đường 4A t1  T  2  2 s  Khi vật quay trạng thái ban đầu với A � �x   � � v0 �  A Thời gian vật thêm quãng đường s� t  t1  t2  A A T T T  t2      s  Do đó, thời gian cần tìm 2 12 12  s  Chọn A Câu 12: Ta có T  1 s  � t  2T  T Quãng đường vật thời gian s  2.4 A  A  10 A  12,5  cm  Chọn D Câu 13: Ta có T  T  s  ; t   s   Do quãng đường vật 4,5T 9.2 A  54  cm  Chọn B �x  Câu 14: Ta có T  0,5s Tại thời điểm ban đầu � (vật VTCB theo chiều dương) v0 � Trong 1,125  2T  T vật quãng đường s  2.4 A  A  A  36  cm  Chọn B Câu 15: : Ta có T  0,5s Tại thời điểm t = vật vị trí biên dương Lại có t  2,875  23 T suy quãng đường vật s  23 A  92  cm  Chọn D �x1  1,366 T Mặt khác Vt  7T   t0 Câu 16: Tại thời điểm ban đầu � v0 � (sau 7T vật quay lại trạng thái ban đầu, sau T vật đến li độ x   x1 CĐ theo chiều âm) Tại thời điểm t = �x2  1, 22734  cm  � s0   x1  x2  1,386 (s) ta có: � v0 � Do quãng đường vật s  7.4 A  A  s0  42,56  cm  Chọn D Câu 17: Thời gian vận tốc vật từ vmax � Khi t2  vmax T T  2 Vt  suy  � T  6 15 T vật s  A  12  cm  (do thời điểm ban đầu vật VTCB) Suy A  4;   � v0  vmax  20  cm / s  Chọn A Câu 18: Ta có T  2 T  �Vt  0,5  � S  A  16cm Chọn C  Câu 19: �x  Ta có: T  0,5s ; Tại thời điểm ban đầu � v0 � Lại có 1,125  s   2T  T suy S  2.4 A  s0  A  A  36  cm  Chọn B Câu 20: Ta có Vt  1 s   2T  T Quãng đường vật thời gian Vt  1 s  S  A  A  50cm Tốc độ trung bình vtb  S  50  cm s  Chọn D t Câu 21: � A �x  2 T T T  0, 2( s ) � t     Tại thời điểm ban đầu � Ta có: T   15 6 � v0 � Do quãng đường vật s  A A   A   cm  Chọn D 2   v Câu 22: Tại VTCB, vật vị trí vmax đến vị trí vật có tốc độ max vật qt góc V  �   2 Ta có V  .Vt   5   A    nên vật quãng đường S  A   � A   cm  Vậy tốc độ cực đại vật vmax   A    2 cm s Chọn A Câu 23: Vật từ M � N với quãng đường 12 cm Vật tiếp 18 cm quay lại M đủ chu kì nên A  12  18 � A  7,5cm Chọn B Câu 24: Quãng đường lớn S max  A sin V 2 2 T   A sin Vt  A sin  A sin  A 2T 2T 6 Cách 2: Ta có Vt  T T T A   � Smax   A Chọn A 12 12 Câu 25: Ta có Vt  2T T T   Khi S  A  S � Quãng đường lớn vật T T T A �   A   S max 12 12 Do S max  A  A  A Chọn D Câu 26: Ta có: Vt  T 2T  suy S max  A  S � Quãng đường lớn vật T T T A   Smax �  6 Do Smax  A  A Chọn C Câu 27: Ta có Vt  T 2T  suy Smin  A  S � Quãng đường nhỏ vật A� T T T �  �   S �A  � A Do S  A Chọn A 6 � 2� Câu 28: Ta có: tmin � S  Smax T T A A Chọn A  nên dễ suy tmin    12 6 f 2 Do S max  A  Câu 29: Ta có: tmax � S  Smin Do Smin  A  T T A A Chọn C  nên dễ suy tmin    3f 2 Câu 30: Khoảng thời gian vật di chuyển từ VTCB đến vị trí có li độ cm t  Vận tốc trung bình Câu 31: Ta có: T  v tb  x2  x1   360  cm s  Chọn A t2  t1 120 2 T T T  0,5( s ) , mặt khác Vt   s      6 Do quãng đường lớn vật Câu 32: Ta có: T   s 12 120 T A S max    cm  Chọn A 5 T T  s   T   Khi Smax  A  S � Quãng đường lớn vật T T T A �   A   Smax 6 Do S max  A  A  A Chọn D Câu 33: Ta có:   2 � T  �  A sin Với S max V 2 T T �  1  1s �Vt    � S max  A  S max   V  .Vt �   �  A sin  A   suy S max Từ (1), (2) suy Smax  A  12cm Chọn A A  A  2,5 A Câu 34: Quãng đường vật S  Thời gian vật di chuyển t  Vận tốc trung bình vtb  T T 2T   S 15 A 15 Af   Chọn A t 4T Câu 35: Quãng đường vật Tốc độ trung bình vật vtb  chu kì đầu S  A  8cm S   40  cm s  Chọn C t 0, ... khoảng thời gian n quãng đường vật 2nA T  quãng đường lớn nhất, nhỏ tính hai cách Trong khoảng thời gian Vt � trường hợp  Bài tốn 2: Tính thời gian ngắn dài xét độ dài quãng đường S Phương pháp... 21cm Chọn B  Dạng 2: Quãng đường lớn nhất, nhỏ  Bài toán 1: Tính quãng đường lớn nhỏ mà vật xét khoảng thời gian Vt Phương pháp giải: So sánh khoảng thời gian Vt mà toán cho với nửa chu kỳ... � quãng đường cm Hỏi giây thứ 2013 vật quãng đường bao nhiêu? A cm B cm C cm D 12 cm Lời giải Sử dụng đường tròn lượng giác: Ban đầu vật M � 1s đầu ứng với   2 �   2 rad s � T  3s Quãng

Ngày đăng: 09/07/2020, 11:22

HÌNH ẢNH LIÊN QUAN

A. 331,4 cm. B. 360 cm. C. 337,5 cm. D. 333,8 cm. - Chủ đề 06  bài toán tính quãng đường   29 trang
331 4 cm. B. 360 cm. C. 337,5 cm. D. 333,8 cm (Trang 4)
Dựa vào hình vẽ ta có: 14.4 22 331, 4. 2 - Chủ đề 06  bài toán tính quãng đường   29 trang
a vào hình vẽ ta có: 14.4 22 331, 4. 2 (Trang 4)
Quãng đường lớn nhất đối xứng qua trục sin khi vật đi từ M 1� M2 (hình 1): max - Chủ đề 06  bài toán tính quãng đường   29 trang
u ãng đường lớn nhất đối xứng qua trục sin khi vật đi từ M 1� M2 (hình 1): max (Trang 12)
Thời gian Vt tương ứng với góc 2 3 như trong hình 3 - Chủ đề 06  bài toán tính quãng đường   29 trang
h ời gian Vt tương ứng với góc 2 3 như trong hình 3 (Trang 22)
C. x 10cos t cm. D. 10cos 8. 2 - Chủ đề 06  bài toán tính quãng đường   29 trang
x  10cos t cm. D. 10cos 8. 2 (Trang 22)

TỪ KHÓA LIÊN QUAN

w