1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề (1)

17 75 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,37 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN TẬP THI TỐT NGHIỆP THPT 2020 BÌNH PHƯỚC MƠN: TỐN Thời gian làm bài: 90 phút ĐỀ ÔN TẬP SỐ 01 (50 câu trắc nghiệm) Câu Có cách xếp nhóm học sinh gồm bạn nam bạn nữ thành hàng ngang? A 10! B 4! C 6!.4! D 6! Câu Cho cấp số cộng có u1 = cơng sai d = Tổng 26 số hạng cấp số cộng bao nhiêu? A 975 B 775 x Câu Tập nghiệm phương trình A S = ∅ C 875 −3 x = D 675 B S = { 1; 2} C S = { 0} D S = { 1} Câu Hình lập phương có đường chéo mặt bên cm Tính thể tích khối lập phương A cm3 C cm3 B 16 cm3 D 2 cm3 Câu Tìm tập xác định hàm số y = log ( x − 3x + ) A ( −∞;1) ∪ ( 2; +∞ ) B ( 1; ) C ( 2; +∞ ) D ( −∞;1) Câu Hàm số f ( x ) = cos ( x + ) có nguyên hàm A − sin ( x + ) + x B sin ( x + ) − C sin ( x + ) − D − sin ( x + ) + Câu Cho khối chóp tam giác có đường cao 100 cm cạnh đáy 20 cm, 21 cm, 29 cm Tính thể tích khối chóp A 7000 cm3 B 6000 cm3 C 6213 cm3 D 7000 cm3 Câu Cho khối nón trịn xoay có bán kính đáy r = chiều cao h = Tính thể tích V khối nón cho A V = 16π B V = 12π C V = D V = 4π Câu Khối cầu có bán kính R = tích bao nhiêu? A 144π B 288π C 48π D 72π Câu 10 Cho hàm số y = f ( x ) có bảng biến thiên Khẳng định sau sai? A Hàm số nghịch biến khoảng ( −∞; −1) B Hàm số nghịch biến khoảng ( 0;1) Trang C Hàm số đồng biến khoảng ( 2; +∞ ) D Hàm số nghịch biến khoảng ( −2; +∞ ) Câu 11 Cho số thực dương a, b thỏa mãn log a = x, log b = y Tính P = log ( a b ) A P = xy B P = x y C P = x + y D P = x + y Câu 12 Một hình trụ có diện tích xung quanh S, diện tích đáy diện tích mặt cầu có bán kính a Khi thể tích hình trụ A Sa B Sa C Sa D Sa Câu 13 Cho hàm số y = f ( x ) xác định, liên tục ¡ có bảng biến thiên sau: Tìm giá trị cực đại yCD giá trị cực tiểu yCT hàm số cho A yCD = −2 yCT = B yCD = yCT = C yCD = yCT = D yCD = yCT = −2 Câu 14 Đường cong hình vẽ bên đồ thị hàm số A y = − x + x + B y = x +1 x −1 C y = x −1 x +1 D y = x − x − Câu 15 Tìm đường tiệm cận ngang đồ thị hàm số y = A y = −2 B x = −1 − 2x x +1 C x = −2 D y = Câu 16 Tập nghiệm bất phương trình 32 x −1 > 27 1  A  ; +∞ ÷ 2  B ( 3; +∞ ) 1  C  ; +∞ ÷ 3  D ( 2; +∞ ) Câu 17 Cho hàm số f ( x ) có đồ thị hình vẽ Số nghiệm phương trình f ( x ) − = A B C D Câu 18 Nếu dx ∫ x − = ln c vi c Ô thỡ giỏ tr ca c bng A B C D 81 Câu 19 Tìm phần thực phần ảo số phức liên hợp số phức z = + i Trang A Phần thực 1, phần ảo −1 B Phần thực 1, phần ảo −i C Phần thực 1, phần ảo D Phần thực 1, phần ảo i z2 z1 Câu 20 Cho hai số phức z1 = + 2i, z2 = − i Tìm số phức z = A z = + i 10 10 B z = + i 5 C z = − i 5 D z = − + i 10 10 Câu 21 Trên mặt phẳng tọa độ Oxy cho điểm M hình vẽ bên điểm biểu diễn số phức z Tìm z A z = −4 + 3i B z = −3 + 4i C z = − 4i D z = + 4i Câu 22 Trong không gian tọa độ Oxyz, tọa độ điểm G′ đối xứng với điểm G ( 5; −3;7 ) qua trục Oy A G′ ( −5;0; −7 ) B G′ ( −5; −3; −7 ) C G′ ( 5;3;7 ) D G′ ( −5;3; −7 ) Câu 23 Trong không gian Oxyz, cho A ( −2;1;1) , B ( 0; −1;1) Phương trình mặt cầu đường kính AB A ( x + 1) + y + ( z − 1) = B ( x + 1) + y + ( z − 1) = C ( x + 1) + y + ( z + 1) = D ( x − 1) + y + ( z − 1) = 2 2 2 2 Câu 24 Trong không gian Oxyz, cho mặt phẳng ( P ) : x + y − z + = Một vec-tơ pháp tuyến mặt phẳng ( P ) r A n = ( 1;1; −2 ) r B n = ( 1;0; −2 ) r C n = ( 1; −2; ) Câu 25 Trong không gian Oxyz, cho đường thẳng d : r D n = ( 1; −1; ) x −1 y − z = = Điểm thuộc đường −2 thẳng d ? A M ( −1; −2;0 ) B M ( −1;1; ) C M ( 2;1; −2 ) D M ( 3;3; ) Câu 26 Cho hình lập phương ABCD A′B′C ′D′ Góc hai đường thẳng B′A CD A 90° B 60° C 30° Câu 27 Cho hàm số f ( x ) có đạo hàm f ′ ( x ) = ( x − 1) ( x − ) D 45° ( x − 3) ( x − ) , ∀x ∈ ¡ Số điểm cực trị hàm số cho A B C D Câu 28 Tổng giá trị lớn giá trị nhỏ hàm số y = − x − x A + B C D − Câu 29 Cho < b < a < , mệnh đề đúng? A log b a < log a b B log b a < C log b a > log a b D log a b < Trang 2 Câu 30 Số giao điểm đồ thị hàm số y = x x − với đường thẳng y = A B C D Câu 31 Tập nghiệm bất phương trình log ( x + 1) > log3 ( − x ) S = ( a; b ) ∪ ( c; d ) với a, b, c, d số thực Khi a + b + c + d bằng: A B C D Câu 32 Tính thể tích khối tròn xoay sinh quay tam giác ABC cạnh quanh AB A 3π B e Câu 33 Cho tích phân I = ∫ A I = π C B I = ∫ t dt D π + ln x dx Đổi biến t = + ln x ta kết sau đây? x 2 ∫ t dt π 2 C I = ∫ t dt D I = ∫ tdt Câu 34 Diện tích hình phẳng giới hạn đồ thị hàm số y = xe x , trục hoành, hai đường thẳng x = −2; x = có cơng thức tính A S = ∫ xe dx x B S = −2 ∫ x xe dx C S = −2 ∫ xe dx x −2 Câu 35 Cho hai số phức z = a + bi z′ = a′ + b′i Số phức A aa′ + bb′ a ′ + b′ B aa′ + bb′ a + b2 C x D S = π ∫ xe dx −2 z có phần thực z′ a + a′ a + b2 D 2bb′ a′2 + b′2 Câu 36 Gọi z1 nghiệm phức có phần ảo âm phương trình z + z + = Trên mặt phẳng tọa độ, điểm sau điểm biểu diễn số phức z1 ? ( ) A P −1; − 2i ( ) B Q −1; 2i ( ) C N −1; Câu 37 Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : ( ) D M −1; − x −1 y + z = = Mặt phẳng ( P ) −1 qua điểm M ( 2;0; −1) vng góc với d có phương trình A x − y + z = B x − y − = C x + y + z = D x − y − z = Câu 38 Trong không gian Oxyz, cho hai điểm A ( 1; 2;3) B ( 2; 4; −1) Phương trình tắc đường thẳng d qua A, B A x + y + z +1 x +1 y + z + x −1 y − z − x + y + z −1 = = = = = = = = B .C .D 4 −4 −4 Câu 39 Xếp ngẫu nhiên 10 học sinh gồm học sinh lớp 12A, học sinh lớp 12B học sinh lớp 12C bàn trịn Tính xác suất P để học sinh lớp ngồi cạnh Trang A P = 1260 B P = 126 C P = 28 D P = 252 Câu 40 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , cạnh bên SA ⊥ ( ABCD ) SA = a Khoảng cách từ A đến mặt phẳng ( SBC ) A 2a B a a C Câu 41 Có giá trị nguyên tham số m để hàm số y = A B D a mx + 10 nghịch biến ( 0; ) ? 2x + m C D Câu 42 Gọi N ( t ) số phần trăm cacbon 14 lại phận sinh trưởng từ t năm t trước ta có cơng thức N ( t ) = 100 ( 0,5 ) A ( %) với A số Biết mẫu gỗ có tuổi khoảng 3754 năm lượng cácbon 14 cịn lại 65% Phân tích mẫu gỗ từ cơng trình kiến trúc cổ, người ta thấy lượng cácbon 14 lại mẫu gỗ 63% Hãy xác định tuổi mẫu gỗ lấy từ cơng trình A 3874 B 3833 C 3834 D 3843 Câu 43 Cho hàm số y = f ( x ) liên tục ¡ có bảng biến thiên hình vẽ Tìm tất giá trị thực m để phương trình m = A  m < −  f ( x ) − m = có hai nghiệm phân biệt B m < −3 C m < − m = D   m < −3 Câu 44 Một hình trụ có bán kính đáy a , mặt phẳng qua trục cắt hình trụ theo thiết diện có diện tích 8a Tính diện tích xung quanh hình trụ A 4π a B 8π a C 16π a Câu 45 Cho hàm số y = f ( x ) có đạo hàm liên tục đoạn ∫ f ( x ) dx = A π ∫ f ′ ( x ) cos B πx 3π dx = Tích phân π C D 2π a [ 0;1] thỏa mãn f ( ) = Biết ∫ f ( x ) dx π D π Trang Câu 46 Cho hàm số y = f ( x ) liên tục ¡ có bảng biến thiên sau Biết f ( ) < , hỏi phương trình f ( x ) = f ( ) có nghiệm? A B C D Câu 47 Cho số thực a, b thỏa mãn điều kiện < b < a < Tìm giá trị nhỏ biểu thức P = log a ( 3b − 1) + 8log 2b a − a A A = B 3 C D Câu 48 Gọi S tập hợp tất giá trị tham số thực m cho giá trị lớn hàm số y = x − x + 2m − đoạn [ −2;3] đạt giá trị nhỏ Số phần tử tập S A B C D Câu 49 Cho hình hộp chữ nhật ABCD A′B′C ′D′ Gọi M trung điểm BB′ Mặt phẳng ( MDC ') chia khối hộp chữ nhật thành hai khối đa diện, khối chứa đỉnh C khối chứa đỉnh A′ Gọi V1 ,V2 thể tích hai khối đa diện chứa C A′ Tính A V1 = V2 24 B V1 = V2 17 C V1 V2 V1 = V2 12 D 2017   Câu 50 Tìm tất giá trị thực tham số a > thỏa mãn  2a + a ÷   A < a < B < a < 2017 C < a ≤ 2017 V1 17 = V2 24 a   ≤  22017 + 2017 ÷   D a ≥ 2017 Hết Trang Đáp án 1-A 11-D 21-C 31-B 41-C 2-A 12-A 22-B 32-B 42-B 3-B 13-B 23-B 33-B 43-A 4-B 14-B 24-A 34-B 44-B 5-A 15-A 25-B 35-A 45-A 6-B 16-D 26-D 36-D 46-C 7-D 17-A 27-C 37-A 47-D 8-D 18-B 28-D 38-C 48-D 9-B 19-A 29-A 39-B 49-B 10-D 20-C 30-D 40-D 50-D LỜI GIẢI CHI TIẾT Câu 1: Đáp án A Nhóm học sinh có tất 10 học sinh Xếp 10 học sinh thành hàng ngang có P10 = 10! cách xếp Câu 2: Đáp án A Ta có S n = nu1 + n ( n − 1) 26.25 d ⇒ S 26 = 26.0 + = 975 2 Câu 3: Đáp án B 2x −3 x = ⇔ x −3 x = 2−2 ⇔ x − x = −2 ⇔ x − x + = ⇔ x = ∨ x = Câu 4: Đáp án B Độ dài cạnh hình lập phương ( = 2 cm Thể tích khối lập phương V = 2 ) = 16 cm3 Câu 5: Đáp án A x < Điều kiện x − x + > ⇔  nên tập xác định hàm số ( −∞;1) ∪ ( 2; +∞ ) x > Câu 6: Đáp án B Hàm số f ( x ) = cos ( x + ) có nguyên hàm sin ( x + ) − Câu 7: Đáp án D Diện tích đáy S= 20 + 21 + 29  20 + 21 + 29   20 + 21 + 29  20 + 21 + 29  − 20 ÷ − 21÷ − 29 ÷ = 210 cm2  2 2     Thể tích khối chóp 1 V = S h = 210.100 = 7000 cm3 3 Câu 8: Đáp án D Thể tích khối nón V = π ( ) = 4π Câu 9: Đáp án B Trang Ta có cơng thức tính thể tích khối cầu V = π R Từ suy thể tích khối cầu cho V = π = 288π Câu 10: Đáp án D Dựa vào bảng biến thiên ta có: hàm số nghịch biến khoảng ( −∞;0 ) , ( 0;1) đồng biến khoảng ( 1; +∞ ) Do đó, khẳng định “Hàm số đồng biến khoảng ( −2; +∞ ) ” sai Câu 11: Đáp án D 3 Ta có log ( a b ) = log ( a ) + log ( b ) = log a + 3log b = x + y Câu 12: Đáp án A Gọi r bán kính đáy hình trụ, h chiều cao hình trụ  r = 2a  S = 2π rh  ⇔ Theo ta có  S h = π r = 4π a  4π a 2 Thể tích khối trụ V = π r h = π 4a S = Sa 4π a Câu 13: Đáp án B Từ bảng biến thiên ta có yCD = yCT = Câu 14: Đáp án B Căn vào đồ thị ta có tiệm cận đứng đồ thị hàm số đường thẳng x = nên loại phương án y = − x + x + 1, y = x −1 , y = x3 − 3x − x +1 Vậy hình vẽ bên đồ thị hàm số y = x +1 x −1 Câu 15: Đáp án A −2 − 2x x lim y = lim = lim = −2 ⇒ y = −2 đường tiệm cận ngang hàm số Ta có: x →±∞ x →±∞ x + x →±∞ 1+ x Câu 16: Đáp án D 32 x −1 > 27 ⇔ x − > ⇔ x > Câu 17: Đáp án A Ta có f ( x ) − = ⇔ f ( x ) = ( *) Trang Số nghiệm phương trình (*) số giao điểm đồ thị hàm số y = f ( x ) đường thẳng y = Dựa vào hình vẽ, hai đồ thị cắt điểm phân biệt Vậy phương trình cho có nghiệm Câu 18: Đáp án B 5 dx ∫1 x − = ln x − = ln Vậy c = Câu 19: Đáp án A z = − i , phần thực 1, phần ảo −1 Câu 20: Đáp án C Ta có z = z2 z2 z1 ( − i ) ( − 2i ) − 7i = = = = − i z1 z1.z1 ( + 2i ) ( − 2i ) 5 Câu 21: Đáp án C Điểm M có tọa độ M ( 3; −4 ) ⇒ điểm M biểu diễn số phức z = − 4i Câu 22: Đáp án B Hình chiếu vng góc điểm G ( 5; −3;7 ) lên trục Oy H ( 0; −3;0 ) Vì G′ đối xứng với G qua trục Oy nên H trung điểm đoạn GG′ nên tọa độ điểm G′  xG′ = xH − xG = −5   yG′ = yH − yG = −3  z = z − z = −7 H G  G′ Vậy tọa độ điểm G′ ( −5; −3; −7 ) Câu 23: Đáp án B Phương pháp: Phương trình mặt cầu có tâm I ( a; b; c ) , bán kính R ( x − a ) + ( y − b ) + ( z − c ) = R 2 Cách giải: Tâm mặt cầu trung điểm AB , có tọa độ I ( −1;0;1) Bán kính mặt cầu: R = IA = 12 + 12 + 02 = Trang Phương trình mặt cầu đường kính AB : ( x + 1) + y + ( z − 1) = 2 Câu 24: Đáp án A r Phương pháp: Mặt phẳng ( P ) : Ax + By + Cz + D = nhận n = ( A; B; C ) vec-tơ pháp tuyến r Cách giải: Một vec-tơ pháp tuyến mặt phẳng ( P ) n = ( 1;1; −2 ) Câu 25: Đáp án B Ta có −1 − 1 − 2 = = = −1 nên M ( −1;1; ) thuộc đường thẳng d −2 Câu 26: Đáp án D Ta có CD //AB , suy góc A′B với CD góc A′B với AB , góc 45° Câu 27: Đáp án C x =1 x =  ′ f x = ⇔ Ta có ( ) x =  x = Bảng biến thiên hàm số f ( x ) sau Vậy số điểm cực trị hàm số cho Câu 28: Đáp án D Tập xác định D =  − 2;  Ta có y ′ = −x − x2 −1 = − x − − x2 − x2 x ≤  y ′ = ⇔ − x = − x ⇔   x = ⇔ x = −1   x = −1  Bảng biến thiên y = 2, Dựa vào bảng biến thiên, ta có −max 2; 2   y = −  − 2;    Trang 10 y + y = − Vậy −max  − 2;  2;      Câu 29: Đáp án A Vì < b < a < nên log a b > log a a = Do log b a = < < log a b log a b Câu 30: Đáp án D 2 Phương trình hồnh độ giao điểm x x − = ( 1) Nếu x − ≥ ⇔ x ≤ −2 ∪ ≤ x  x2 = + ⇔ x = ± 2+ Phương trình ( 1) ⇔ x ( x − ) = ⇔ x − x − = ⇔   x = − ( loaïi ) 2 Nếu x − < ⇔ −2 < x <  x2 = x = ± 2 ⇔ x x − = − ⇔ x − x + = ⇔ ⇔ Phương trình ( ) ( )   x = ±1 x = Vậy phương trình có nghiệm Câu 31: Đáp án Phương pháp: • Tìm điều kiện xác định bất phương trình • Giải bất phương trình Cách giải: Ta có:   x > −1 x +1 >   −1 < x < ⇔ x < ⇔ 2 − x > log ( − x ) + log ( x + 1) < log x + > log − x − log x + > log − x ( ) ( ) ( ) ( ) 3     −1 < x <    x > +  −1 < x < ⇔ ⇔   x + x +1 >   x < −    1−  1+  ⇒ S =  −1; ÷ ÷∪  ; ÷ ÷     a + b + c + d = −1 + 1− 1+ + +2=2 2 Câu 32: Đáp án B Khi quay tam giác ABC quanh cạnh AB ta thu hai khối nón Trang 11 2 1  π Do đó, ta có V = 2Vnoùn = π r h = π  ÷ = 3  ÷  ( đvtt ) 1 , đường cao h = AB = ) 2 (bán kính r = hABC = Câu 33: Đáp án B Ta có t = + ln x ⇒ t = + ln x ⇒ 2tdt = dx x Với x =1⇒ t =1 x=e⇒t = 2 Vậy I = 2 ∫ t.2tdt = ∫ t dt 1 Câu 34: Đáp án B Theo cơng thức tính diện tích hình phẳng ta có S = ∫ xe x dx −2 Câu 35: Đáp án A Ta có z a + bi ( a + bi ) ( a′ − b′i ) aa′ + bb′ a′b − ab′ = = = + i z ′ a′ + b′i a ′ + b′ a ′ + b′ a ′ + b ′ Do phần thực z aa′ + bb′ z′ a ′ + b′ Câu 36: Đáp án D  z = −1 + 2i Ta có z + z + = ⇔  Vì z1 có phần ảo âm nên z1 = −1 − 2i  z = −1 − 2i ( ) Vậy điểm biểu diễn số phức z1 điểm M −1; − Câu 37: Đáp án A Mặt phẳng ( P) có vec-tơ pháp tuyến phương với vec-tơ phương đường thẳng d , suy r n( P ) = ( 1; −1; ) Phương trình mặt phẳng ( P ) 1( x − ) − 1( y − ) + ( z + 1) = ⇔ x − y + z = Câu 38: Đáp án C uuur Ta có đường thẳng d qua A ( 1; 2;3) có vec-tơ phương AB = ( 1; 2; −4 ) Vậy phương trình tắc đường thẳng d x −1 y − z − = = −4 Câu 39: Đáp án B Trang 12 Số phần tử không gian mẫu n ( Ω ) = 9! Gọi E biến cố học sinh lớp ln ngồi cạnh Ta có bước xếp sau: • Xếp học sinh lớp 12C ngồi vào bàn cho học sinh ngồi sát Số cách xếp 5! • Xếp học sinh lớp 12B vào bàn cho học sinh ngồi sát sát nhóm học sinh 12C Số cách xếp 3! × • Xếp học sinh lớp 12A vào hai vị trí cịn lại bàn Số cách xếp 2! Số phần tử thuận lợi cho biến cố E n ( E ) = 5! × 3! × × 2! Xác suất biến cố E P ( E ) = n( E) = n ( Ω ) 126 Câu 40: Đáp án D Phương pháp: Chứng minh để tìm khoảng cách sau áp dụng hệ thức lượng tam giác vng để tính tốn Cách giải: Kẻ AH ⊥ SB = { H }  SA ⊥ AB ⇒ BC ⊥ ( SAB ) ⇒ BC ⊥ AH Ta có   BC ⊥ SA  AH ⊥ SB ⇒ AH ⊥ ( SBC ) ⇒ d ( A; ( SBC ) ) = AH   AH ⊥ BC Áp dụng hệ thức lượng ∆SAB có đường cao AH ta có: d ( A; ( SBC ) ) = AH = SA AB SA2 + AB = a 3a 3a + a = a Câu 41: Đáp án C  m − 20 < mx + 10  Hàm số y = nghịch biến khoảng ( 0; ) ⇔  m 2x + m  − ∉ ( 0; )  − 20 < m < 20   − 20 < m < 20  − 20 < m ≤ −4   − m ≤  ⇔  ⇔  m ≥ ⇔  m  m ≤ −4  ≤ m < 20  − ≥   Vậy m ∈ { −4;0;1; 2;3; 4} Câu 42: Đáp án B Theo ta có 65 = 100 ( 0,5 ) 3754 A ⇔ 0, 65 = ( 0,5 ) 3754 A ⇔ 3754 3754 = log 0,5 0, 65 ⇔ A = A log 0,5 0, 65 Do mẫu gỗ 63% lượng Cacbon 14 nên ta có: Trang 13 t t 63 = 100 ( 0,5 ) A ⇔ 0, 63 = ( 0,5 ) A ⇔ t 3754 = log 0,5 0, 63 ⇔ t = A.log 0,5 0, 63 = log 0,5 0, 63 ≈ 3833 A log 0,5 0, 65 Câu 43: Đáp án D Ta có f ( x ) − m = ⇔ f ( x ) = 2m (*) Quan sát bảng biến thiên hàm số y = f ( x ) , ta thấy, để phương trình (*) có hai nghiệm phân biệt m =  2m =   m < −3 ⇔  m log a b D log a b < Trang 2 Câu 30 Số giao điểm đồ thị hàm số y = x x − với đường thẳng y = A B C D Câu 31 Tập nghiệm bất

Ngày đăng: 07/07/2020, 15:55

HÌNH ẢNH LIÊN QUAN

Câu 4. Hình lập phương cĩ đường chéo của mặt bên bằng 4 cm. Tính thể tích khối lập phương đĩ - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 4. Hình lập phương cĩ đường chéo của mặt bên bằng 4 cm. Tính thể tích khối lập phương đĩ (Trang 1)
Câu 12. Một hình trụ cĩ diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mặt cầu cĩ bán kín ha - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 12. Một hình trụ cĩ diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mặt cầu cĩ bán kín ha (Trang 2)
Câu 21. Trên mặt phẳng tọa độ Oxy cho điểm M trong hình vẽ bên là điểm biểu diễn của số phức z - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 21. Trên mặt phẳng tọa độ Oxy cho điểm M trong hình vẽ bên là điểm biểu diễn của số phức z (Trang 3)
Câu 34. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y xe = x, trục hồnh, hai đường thẳng 2;3 - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 34. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y xe = x, trục hồnh, hai đường thẳng 2;3 (Trang 4)
d . Mặt phẳng )P đi - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
d Mặt phẳng )P đi (Trang 4)
Câu 40. Cho hình chĩp .S ABCD cĩ đáy ABCD là hình vuơng cạnh a, cạnh bên SA ⊥( ABCD ) và 3 - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 40. Cho hình chĩp .S ABCD cĩ đáy ABCD là hình vuơng cạnh a, cạnh bên SA ⊥( ABCD ) và 3 (Trang 5)
Câu 49. Cho hình hộp chữ nhật ABCD ABCD. ′. Gọ iM là trung điểm của BB′ . Mặt phẳng ( MDC ') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A′ - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 49. Cho hình hộp chữ nhật ABCD ABCD. ′. Gọ iM là trung điểm của BB′ . Mặt phẳng ( MDC ') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A′ (Trang 6)
Câu 46. Cho hàm số () liên tục trên ¡ và cĩ bảng biến thiên như sau - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
u 46. Cho hàm số () liên tục trên ¡ và cĩ bảng biến thiên như sau (Trang 6)
Độ dài các cạnh hình lập phương là 4 22 2=  cm . - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
d ài các cạnh hình lập phương là 4 22 2= cm (Trang 7)
Dựa vào hình vẽ, hai đồ thị cắt nhau tại 3 điểm phân biệt. Vậy phương trình đã cho cĩ 3 nghiệm. - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
a vào hình vẽ, hai đồ thị cắt nhau tại 3 điểm phân biệt. Vậy phương trình đã cho cĩ 3 nghiệm (Trang 9)
Bảng biến thiên của hàm số () như sau - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
Bảng bi ến thiên của hàm số () như sau (Trang 10)
Theo cơng thức tính diện tích hình phẳng ta cĩ - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
heo cơng thức tính diện tích hình phẳng ta cĩ (Trang 12)
Quan sát bảng biến thiên của hàm số ), ta thấy, để phương trình (*) cĩ đúng hai nghiệm phân biệt thì 0 - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
uan sát bảng biến thiên của hàm số ), ta thấy, để phương trình (*) cĩ đúng hai nghiệm phân biệt thì 0 (Trang 14)
Ta cĩ hàm số () là hàm số chẵn nên đồ thị đối xứng qua trục O y, từ đĩ ta cĩ bảng biến thiên sau - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
a cĩ hàm số () là hàm số chẵn nên đồ thị đối xứng qua trục O y, từ đĩ ta cĩ bảng biến thiên sau (Trang 15)
Từ bảng biến thiên suy ra phương trình () cĩ 3 nghiệm. - Bộ đề ôn tập thi tốt nghiệp THPT 2020 môn toán sở GDĐT bình phước đề  (1)
b ảng biến thiên suy ra phương trình () cĩ 3 nghiệm (Trang 15)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w