1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra đại số và giải tích 11 chương 4 năm 2017 2018 trường thường tín hà nội

8 53 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 207,08 KB

Nội dung

Sở GD&ĐT Hà Nội THPT Thường Tín – Tơ Hiệu Mã đề 401 Câu ĐỀ KIỂM TRA GIỚI HẠN – LIÊN TỤC Mơn Tốn – Lớp 11 Năm học 2017-2018 Thời gian làm bài: 45 phút lim q n bằng: A  q  B q  C q  D q  Lời giải Chọn B lim q n  q  Câu Chọn mệnh đề sai mệnh đề sau: A lim c  c c số C lim  n B lim  với k nguyên dương nk D lim n k  với k nguyên dương Lời giải Chọn D lim n k   với k nguyên dương Câu Chọn khẳng định đúng: A lim f  x   a  lim f  x   a x  x0 x  x0 B lim f  x   a  lim f  x   a x  x0 x  x0 C lim f  x   a  lim f  x   lim f  x   a D lim f  x   a  lim f  x   lim f  x  x  x0 x  x0 x  x0 x  x0 x  x0 x  x0 Lời giải Chọn C Câu Trong mệnh đề sau, mệnh đề đúng? A Hàm số chứa bậc hai liên tục toàn tập số thực  B Hàm số đa thức liên tục toàn tập số thực  C Hàm số lượng giác liên tục toàn tập số thực  D Hàm số phân thức liên tục toàn tập số thực  Lời giải Chọn B Câu 2x2  x  x  x lim B 3 A C  D Lời giải Chọn A  2x  x4 x6   lim lim  x  x  x x  1 x Câu Giới hạn hàm số: lim(9  x) bằng: x 1 B  ∞ A 10 C +∞ Lời giải D Chọn A Có lim   x     10 x 1 Câu với n  N * Khẳng định sau đúng? n B lim un  3 C lim un  D lim un  Biết dãy số  un  thỏa mãn un   A lim un  Lời giải Chọn A 1 với n  N * , mà lim  nên theo nguyên lí kẹp, ta có lim  un  3  n n  lim un  Có un   Câu Nếu lim un  lim A 504,5 2018 un  C 2018 B 126,125 D 224, Lời giải Chọn A lim un   lim Câu 2018 un   lim 2018 97  504,5 Cho phương trình: x  x   (1) Trong mệnh đề sau, mệnh đề sai? A (1) có nghiệm khoảng (-1; 1) B (1) có nghiệm khoảng (0; 1) C (1) có nghiệm R D Vơ nghiệm Lời giải Chọn D Đặt f  x   x5  x  , f  x  liên tục  Có f  1  3 , f 1   f  1 f 1  Vậy (1) có nghiệm thuộc  1;1 Vậy D sai 2.3n  5n 1 bằng: n  5n A  Câu 10 lim B C Lời giải D 5 Chọn D n lim 2.3n  5n 1 n  5n 3    5  lim  n  5 2   1 5  x2  x   Hàm số cho liên tục xo  m bằng: Câu 11 Cho hàm số f ( x)   x  m x   A 1 B 4 C D Lời giải Chọn C Tập xác định: 𝔻   f  2  m  x   x    lim x   x2  x2   lim  lim   x2 x 2 x2 x  x 2 x  x 2 x2 Hàm số f  x  liên tục xo  lim f  x   f    m  lim f  x   lim x 2 Câu 12 Câu sai A Hàm số f  x  liên tục  a; b  liên tục điểm thuộc  a; b  B Hàm số f  x  có miền xác định 𝔻, a  𝔻 Hàm số liên tục x  a lim f  x   f  a  x a C Tổng, hiệu, tích, thương hai hàm số liên tục điểm hàm số liên tục điểm D Các hàm số phân thức hữu tỉ liên tục khoảng tập xác định Lời giải Chọn C Câu 13 Chọn khẳng định sai khẳng định sau: A Hàm số y  x2  5x  liên tục khoảng  ;2  ,  2;    x2  x2  x  2  B Hàm số f ( x)   x  liên tục điểm x  2 3 x  2  C Hàm số y  x  liên tục điểm x  D Hàm số y  sin x liên tục  Lời giải Chọn B Nhận thấy hàm số y x2  5x  có xác định  ;2  ,  2;   ; x2 y  x  y  sin x có tập xác dịnh   hàm số liên tục tập xác định  nhận đinh A, C, D  x2  x  2  có: Xét hàm số f ( x)   x  3 x  2   x   x    lim x   4 x2  lim  lim   x2 x2 x  x2 x2 x2   nhận định B sai x2 x  f  2   3  lim n3  n  3n  bằng: n 4n  Câu 14 lim A B  C  D  Lời giải Chọn D 1  n3  1     1    n  n  3n  n n n   n n n    lim lim  lim n n  n  2   4n   n3    n n3 n n   x2  6x   x  x  Tìm a để hàm số liên tục x  Câu 15 Cho hàm số f  x    a  x   A a  B a   C a  D a  2 Lời giải Chọn B TXĐ: 𝔻   lim x1  x  1 x  5  lim x   2 x2  6x   lim x1 x  x1  x  1 x  1 x 1 f 1  a  Hàm số liên tục x   lim f  x   f 1  a  x1  ax  bx  theo a; b x 0 x a b a b A  B  2  2  a   2 Câu 16 Tính lim C a b  D a b  Lời giải Chọn B  ax  ax  bx   lim Ta có lim x 0 x 0 x  lim  ax   ax   lim x 0  lim x 0 Câu 17 lim x2  x x   bx     lim  bx  x 0  ax 1  bx  1    bx  1   ax b  bx    bx    x  x x 0  bx    ax  x 0  lim    bx  1  ax  x  lim  lim x 0 x 0 x   ax    ax  ax b a    ax  x2  bằng: x2 B A Không tồn C  D Lời giải Chọn A Ta có lim x2  x2   lim  lim  x    x  x  x  x  2 lim x2  x2   lim    x     4  lim x  x    x   x  2  x 2 x 2 Ta có lim x2  x2  x2   lim nên lim không tồn x2 x  x  x 2 x  Câu 18 lim x 2 s inx  cosx bằng:   x tan   x 4  A  B  C D Lời giải Chọn A Ta có s inx  cosx   x tan   x 4  lim    sin  x      4    lim   cos  x       lim    x x   4 tan   x  4  Câu 19 Cho hàm số y  f  x  có đồ thị hình vẽ bên Trong mệnh đề sau, mệnh đề sai: A lim f  x   x  B lim f  x   x  C lim f  x   x 1 D lim f  x    x  4 Lời giải Chọn C Ta có lim f  x    x 1 Do lim f  x   sai x 1 Câu 20 Cho hàm số f ( x)  x3  x  Trong mệnh đề sau, mệnh đề sai? A Phương trình f(x) = có nghiệm khoảng (0; 1) B Phương trình f(x) = vơ nghiệm khoảng (0; 1) C Phương trình f(x) = có nhiều nghiệm D Phương trình f(x) = có nghiệm khoảng (-1; 1) Lời giải Chọn B Bấm máy ta thấy phương trình f ( x)  x3  x   có nghiệm x  0,5233   0;1 hai nghiệm ảo Câu 21 Khi x tiến tới  , hàm số f  x   A   x  x  x có giới hạn bằng: C +  B D  Lời giải Chọn A Ta có: lim f  x   lim x  x      x  x  x  lim  x     1  x  x        Vì lim x   ; lim     1  2  x nên lim f  x    x  x  x  x   a b   x3  x  x   x3  x  x  Câu 22 Biết hàm số f  x    liên tục điểm x  Tìm  7a x   200 hệ thức liên hệ a b A 5a  8b  B a  3b  C 2a  3b  D 8a  5b  Lời giải Chọn D Ta có: f  2   7a 200   a  x  x    b  x  1 a b hữu hạn   lim  lim f  x   lim  2 2 x2 x2   x    x  1  x    x  x    x 2  x    x  1 x  x   nên nghiệm tử số a  x  x    b  x  1  8a  5b  Câu 23 Nếu lim x 1 A f  x  g  x 1  lim  lim x 1 x 1 x 1 x 1 17 B 17 f  x  g  x    C x 1 bằng: D 23 Lời giải Chọn A Vì lim x 1 f  x  g  x  1   f 1  lim   g 1  x  x 1 x 1 f  x  g  x    lim x 1 x 1 x 1 f 1    lim f 1 g 1    x  1  f  x   g  x   1 f  x    x 1 x 1  lim x 1 f  x  g  x    f  x  g  x    f  x  g  x      5.3  17  5 3  Câu 24 Nếu phương trình: ax   b  c  x  d  e  ,  a , b, c , d    có nghiệm x0  phương trình: f  x   với f  x   ax  bx3  cx  dx  e có nghiệm Khi đó, mệnh đề sau  x  f   x   f  x  f   x     x  1 A f 0 C 0  x  f   x    x  1 bx  d  f  x  f  x   B f 0 D 0 0 Lời giải Chọn D Ta có x0 nghiệm phương trình ax   b  c  x  d  e  nên ax02   b  c  x0  d  e   ax02  cx0  e    bx0  d  Xét f  x   ax  bx3  cx  dx  e  ax  cx  e  x  bx  d  Ta có: f  x   ax 0  cx0  e  x0  bx0  d   x0  bx0  d    bx0  d    bx0  d   x   ax  cx  e  x  bx  d    x  bx  d    bx Suy ra: f  x  f   x     x  1 bx  d  Vì x    x  1  nên f  x  f   x   f 0 0 0  d     bx0  d     x0   x0  0 0 0 0 Câu 25 Một bóng tenis thả từ độ cao 81  m  Mỗi lần chạm đất, bóng lại nảy lên hai phần ba độ cao lần rơi trước Tính tổng khoảng cách rơi nảy bóng từ lúc thả bóng lúc bóng khơng nảy A 524  m  B 243  m  C 405  m  D 486  m  Lời giải Chọn C Đặt h1  81 m  Sau lần chạm đất đầu tiên, bóng nảy lên độ cao h2  h1 Tiếp đó, h2 rơi từ độ cao h3 tiếp tục Sau lần chạm đất thứ n từ độ cao hn , bóng nảy lên hn 1  hn , Vậy tổng khoảng cách rơi nảy bóng từ lúc thả bóng lúc bóng không nảy d   h1  h2   hn     h2   hn    d tổng hai cấp số nhân bóng rơi từ độ cao h2 , chạm đất nảy lên độ cao h3  lùi vơ hạn có số hạng đầu, theo thứ tự h1 , h2 có cơng bội q  Suy ra: h1 h2 d   405  m  2 1 1 3 HẾT ... lim un  Có un   Câu Nếu lim un  lim A 5 04, 5 2018 un  C 2018 B 126,125 D 2 24, Lời giải Chọn A lim un   lim Câu 2018 un   lim 2018 97  5 04, 5 Cho phương trình: x  x   (1) Trong... A Ta có s inx  cosx   x tan   x ? ?4  lim    sin  x      4? ??    lim   cos  x       lim    x x   4 tan   x  ? ?4  Câu 19 Cho hàm số y  f  x  có đồ thị... trước Tính tổng khoảng cách rơi nảy bóng từ lúc thả bóng lúc bóng không nảy A 5 24  m  B 243  m  C 40 5  m  D 48 6  m  Lời giải Chọn C Đặt h1  81 m  Sau lần chạm đất đầu tiên, bóng

Ngày đăng: 07/07/2020, 10:22

HÌNH ẢNH LIÊN QUAN

Câu 19. Cho hàm số y  có đồ thị như hình vẽ  bên.  Trong  các  mệnh  đề  sau,  mệnh  đề  nào sai:  - Đề kiểm tra đại số và giải tích 11 chương 4 năm 2017 2018 trường thường tín hà nội
u 19. Cho hàm số y  có đồ thị như hình vẽ bên. Trong các mệnh đề sau, mệnh đề nào sai: (Trang 5)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN