Ngun Ti liu: http://violet.vn/thpt-vinhchan-phutho Cực trị i. Dấu hiệu 1 ii. Dấu hiệu 2 Bài toán 1: Cho hàm số y=f(x,m). Tìm m để hàm số đạt cực trị tại x=x 0 . 1) Cho hàm số y=(x-m) 3 -3x+m 3 . a) Tìm m để hàm số đạt cực tiểu tại điểm có hoành độ x=0. b) Chứng tỏ đồ thị của hàm số (1) luôn qua một điểm cố định khi m thay đổi. Bài toán 2: Cho hàm số y=f(x,m). Tìm m để hàm số có cực trị thỏa mãn điều kiện cho trớc. 1) Cho hàm số : 4 3 2 ++ = x pxx y . Tìm p để hàm số có cực đại cực tiểu thỏa mãn điều kiện: y CĐ -y CT =4. 2) Cho hàm số : mx mxx y = 32 2 . Cho hàm số )(2 4)12( 22 mx mmxmx y + +++++ = . Tìm m để đồ thị hàm số có cực đại cực tiểu và tính khoảng cách giữa hai điểm đó. Tìm m để hàm số có cực đại cực tiểu thỏa mãn điều kiện: |y CĐ -y CT |> 8. 3) Cho hàm số y= x 3 -3ax 2 +4a 3 . Tìm a để hàm số có cực đại, cực tiểu đối xứng nhau qua đờng phân giác của góc phần t thứ nhất. Bài toán 3: Viết phơng trình đờng thẳng đi qua điểm CĐ, CT Bài toán 4: Tìm quỹ tích điểm cực trị 1) Cho hàm số 2 )3( 2 + = x xmx y . Tìm quỹ tích của điểm cực đại và cực tiểu khi m thay đổi. 2) Cho hàm số mx mxmmx y ++ = 1)1( 422 (C m ). CMR trên mặt phẳng tọa độ tồn tại một điểm nó là điểm cực đại của (C m1 ) và là điểm cực tiểu của (C m2 ). Bài toán 5: Cho hàm số y=ax 4 + bx 2 +c (C). Tìm điều kiện để (C) có cực trị là 3 đỉnh của tam giác thỏa mãn điều kiện cho trớc. 1) Cho (C):y=x 4 -2mx 2 +m 2 . Tìm m để đồ thị hàm số có 3 điểm cực trị sao cho tam giác có ba đỉnh là ba điểm cực trị là tam giác đều. 2)Cho (C):y=x 4 -8mx 2 +2m 2 . Tìm m để đồ thị hàm số có 3 điểm cực trị sao cho tam giác có ba đỉnh là ba điểm cực trị là tam giác vuông cân. Bài toán: Cho y= f(x,a)-Dấu của y phụ thuộc vào a. Tìm a để hàm số có cực trị BT1 Tìm m để các hàm số có cực đại cực tiểu 1) )12().6(. 3 1 23 ++++= mxmmxxy 2) 5.3).2( 23 +++= xmxxmy BT2(HVNgân Hàng TPHCM 2001) CMR với mọi m hàm số sau luôn dạt cực trị tại x 1 ; x 2 với x 1 x 2 không phụ thuộc m 1)1.(6)12(3.2 23 ++++= xmmxmxy BT3 duchoa_7804@yahoo.com 1 Ngun Ti liu: http://violet.vn/thpt-vinhchan-phutho Tìm m để hàm số sau luôn đạt cực trị tại x 1 ; x 2 thoả mãn x 1 < -1 < x 2 không phụ thuộc m 1).45()2(. 3 1 223 +++++= mxmxmxy BT4(CĐSP TPHCM 1999) Tìm m để mxmmxxy ++= )1(33 223 đạt cực tiểu tại x = 2 BT5(ĐH Huế 1998) Tìm m để 2)1(3 23 ++= xmmxxy đạt cực tiểu tại x = 2 BT6(ĐH Bách Khoa HN 2000) Tìm m để 1)1(3 23 += xmmxmxy không có cực trị Ph ơng trình đ ờng thẳng đi qua cực đại cực tiểu BT7(ĐH Thuỷ Sản Nha Trang 1999) Cho hàm số 1).(12)13(3.2 223 ++++= xmmxmxy Tìm m để hàm số có CĐ,CT .Viết phơng trình đờng thẳng đi qua CĐ,CT BT8(HVKT Mật mã 1999) Cho hàm số )2(2)27(2)1(3 223 +++++= mmxmmxmxy Tìm m để hàm số có CĐ,CT .Viết phơng trình đờng thẳng đi qua CĐ,CT BT9 Tìm m để 323 43)( mmxxxf += có CĐ,CT đối xứng nhau qua đờng thẳng y = x BT10(ĐH D ợc HN 2000) Tìm m để 1)1(6)12(32)( 23 ++++= xmmxmxxf có CĐ,CT đối xứng nhau qua đờng thẳng y = x + 2 BT11(ĐHQG TPHCM 2000) Cho (C m ) : mxmmxmxy +++= 3)12(3 23 Tìm m để (C m ) có CĐ và CT . CMR khi đó đờng thẳng đi qua CĐ, CT luôn di qua một điểm cố định BT12 Tìm a để hàm số sau luôn đạt cực trị tại x 1 ; x 2 thoả mãn 1 2 2 2 1 =+ xx 1).2cos1()sin1(2. 3 4 23 ++= xaxaxy BT13 Cho hàm số xaxaaxy .2sin 4 3 )cos(sin 2 1 . 3 1 23 ++= 1) Tìm a để hàm số luôn đồng biến 2) Tìm a để hàm số đạt cực trị tại x 1 ; x 2 thoả mãn 21 2 2 2 1 xxxx +=+ BT14 Tìm m để hàm số mx m xy += 23 2 3 duchoa_7804@yahoo.com 2 Ngun Ti liu: http://violet.vn/thpt-vinhchan-phutho Có các điểm CĐ và CT nằm về 2 phía của đờng thẳng y = x 5)- Cực trị hàm bậc 4 BT1 Tìm m để hàm số sau chỉ có cực tiểu mà không có cực đại 4)12(3.8 234 +++= xmxmxy BT2 CMR hàm số 15)( 234 += xxxxf Có 3 điểm cực trị nằm trên một Parabol BT3 Cho (C m ) : 124643)( 234 ++++== mxmxmxxxfy 1) Biện luận theo m số lợng Cực đại, cực tiểu của (C m ) 2) Tìm m để hàm số đạt cực tiểu tại [ ] 2;2 0 x BT3 Cho (C m ) : 1).6()2( 2 3 2. 4 1 )( 234 ++++== xmxmxxxfy 1) Tìm m để hàm số có 3 cực trị 2) Viết phơng trình Parabol đi qua 3 điểm cực trị của (C m ) BT4(ĐH Cảnh sát 2000) Tìm m để hàm số sau chỉ có cực tiểu mà không có cực đại 2 3 4 1 24 += mxxy BT5 (ĐH Kiến trúc 1999) Tìm m để )21()1()( 24 mxmmxxf ++= có đung một cực trị 6)- Cực trị hàm Phân thức bậc 2 / bậc 1 6.1-Sự tồn tại cực trị- đ ờng thẳng đi qua CĐ,CT BT1 Tìm m để các hàm số sau có cực trị 1) 1 2 222 + ++ = x mxmx y 2) 1 )2( 2 + ++ = x mxmx y 3) mx mmxx y + + = 2 2 (ĐH SPHN 1999) 4) 1 )1( 2 + + = x mxmx y (CĐ SPHN 1999) 5) 2 1)1( 2 + +++ = mx xmmx y (ĐH Y Thái Bình 1999 ) 2) 1 )1)(2(2 222 + ++ = mx mxmxm y (ĐH Thái Nguyên 2000) BT2 (ĐH TCKT 1999) Cho (C m ) : mx mmxx y + = 22 1) Tìm m để hàm số có CĐ, CT duchoa_7804@yahoo.com 3 Ngun Ti liu: http://violet.vn/thpt-vinhchan-phutho 2) Viết phơng trình đờng thẳng đi qua CĐ, CT BT3 (ĐH Dân lập Bình D ơng 2001) Cho (C m ) : 1 23)2( 2 + ++++ = x mxmx y Tìm m để hàm số trên có CĐ, CT BT4 Tìm a để ax axx y sin.2 1cos.2 2 + ++ = có CĐ , CT BT5 Tìm a để ax aaaxax y cos sincos.sincos. 22 + +++ = có CĐ , CT BT6 (ĐH Cảnh sát 2000) Viết phơng trình đờng thẳng đi qua CĐ,CT của : mx mxx y + = 8 2 BT7 Cho (C m ) : mx mmmxxm y + = )2(2)1( 232 (m#-1) Tìm m để hàm số có đạt cực trị tại các điểm thuộc ( 0 ; 2 ) BT8 Tìm a,b,c để 2 2 ++ = x cbxax y có cực trị bằng 1 khi x=1 và đờng tiệm cận xiên của đồ thị vuông góc với đờng 2 1 x y = 6.2-Quỹ tích các điểm cực trị trên mặt phẳng toạ độ BT9 (ĐH Đà Nẵng 2000) Cho hàm số (C m ) : 1 1 2 + + = x mmxx y Tìm m để hàm số có cực trị. Tìm quỹ tích của điểm cực trị (C m ) BT10 (ĐH Thuỷ Sản TPHCM 1999) Cho hàm số (C m ) : 1 22 2 = x mmxx y Tìm m để hàm số có cực trị. CMR các điểm cực trị của (C m ) luôn nằm trên một Parabol cố định BT11 (ĐH Ngoại Ngữ 1997) Cho hàm số (C m ) : 2 42 2 + + = x mmxx y Tìm m để hàm số có CĐ,CT. Tìm quỹ tích của điểm CĐ BT12 Cho hàm số (C m ) : mx mxmmx y ++ = 1)1( 422 CMR: trên mặt phẳng toạ độ tồn tại duy nhất một điểm vừa là điểm CĐ của đồ thị ứng với m nào đó đồng thời vừa là điểm CT ứng với giá trị khác của m 6.3-Biểu thức đối xứng của cực đaị, cực tiểu duchoa_7804@yahoo.com 4 Ngun Ti liu: http://violet.vn/thpt-vinhchan-phutho BT13 Tìm m để mx mxx y + = 32 2 có CĐ,CT và 8 > CTCD yy BT14 Tìm m để 2)1( 2)1( 2 ++ ++ = xm xxm y có CĐ,CT và 08)1)(( =++ myy CTCD BT15 (ĐHSP1 HN 2001) Tìm m để 1 22 2 + ++ = x mxx y có CĐ,CT và khoảng cách từ 2 điểm đó đến đờng thẳng x + y + 2=0 là bằng nhau BT16 Tìm m để 2 23)2( 2 + +++++ = x mxmx y có CĐ,CT đồng thời thoả mãn 2 1 22 >+ CTCD yy 6.4-Vị trí t ơng đối của các điểm CĐ - CT BT17 (ĐH Cần Thơ 1999) Cho : mx mmxmx y + ++++ = 4)32( 22 Tìm m để hàm số có 2 cực trị trái dấu nhau BT18 (ĐH QG 1999) Cho : 1 2 + ++ = x mxx y Tìm m để hàm số có 2 cực trị nằm về 2 phía đối với trục Oy BT19 (ĐH Công Đoàn 1997) Cho hàm số : mx mmxx y + = 2 (m#0) Tìm m để hàm số có 2 cực trị trái dấu nhau BT20 (ĐH Th ơng Mại 1995) Cho hàm số : 1 12 2 + = x mmxx y Tìm m để CĐ,CT về 2 phía đối với trục Ox BT21 (ĐH Ngoại Ngữ 2000) Cho hàm số : mx mxmx y +++ = 1)1( 2 Tìm m để hàm số có CĐ,CT và Y CĐ . Y CT >0 BT22 Tìm m để : mx mmxx y + = 5 2 có CĐ,CT cùng dấu BT23 Tìm m để : 1 2 + = x mmxx y có CĐ,CT nằm về 2 phía của đờng thẳng x-2y-1=0 BT24 Tìm m để : mx mmxmmx y 2 322)14(2 322 + ++++ = có một cực trị thuộc góc (II) và một cực trị thuộc góc (IV) trên mặt phẳng toạ độ BT25 duchoa_7804@yahoo.com 5 Ngun Ti liu: http://violet.vn/thpt-vinhchan-phutho Tìm m để : 1 244)1( 22 + ++ = mx mmxmx y có một cực trị thuộc góc (I) và một cực trị thuộc góc (III) trên mặt phẳng toạ độ 7)- Cực trị hàm Phân thức bậc 2 / bậc 2 BT1 Lập bảng biến thiên và tìm cực trị 1) 1 12 2 2 + + = xx xx y 2) 2 43 2 2 + = xx xx y 3) 682 8103 2 2 + + = xx xx y BT2 Tìm m,n để 12 2 2 2 + + = xx nmxx y đạt cực đại bằng 4 5 khi x= - 3 BT3 1) Viết phơng trình đờng thẳng đi qua CĐ,CT của mxx xx y 54 132 2 2 + + = (m>1) 2) Viết phơng trình đờng thẳng đi qua CĐ,CT của mxx xx y + + = 23 52 2 2 3) Tìm a,b để 1 2 ++ + = xx bax y có đúng một cực trị và là cực tiểu 8)- Cực trị hàm số chứa giá trị tuyệt đối và hàm vô tỷ BT1 Tìm cực trị hàm số sau 532 2 ++= xxy BT2 (ĐH Ngoại Th ơng 1998) Tìm m để phơng trình 1 5 1 24 34 2 += + mm xx có 4 nghiệm phân biệt BT3 (ĐH Kinh Tế 1997) Cho 90723)( 23 ++= xxxxf Tìm [ ] 5;5 )ã( x xMaxf BT4 Tìm m để phơng trình mm xxx = + 2 296 23 2 1 có 6 nghiệm phân biệt BT5 Tìm m để phơng trình mxxxx +=+ 545.2 22 có 4 nghiệm phân biệt BT6 Tìm cực trị hàm số sau 1) 5432 2 +++= xxxy 2) 11 22 ++++= xxxxy BT7 1) Tìm a để hàm số 12 2 ++= xaxy có cực tiểu 2) Tìm a để hàm số 5422 2 +++= xxaxy có cực đại BT8 Lập bảng biến thiên và tìm cực trị hàm số sau duchoa_7804@yahoo.com 6 Nguồn Tài liệu: http://violet.vn/thpt-vinhchan-phutho 1) 2531 2 ++−= xxy 2) 2 103 xxy −+= 3) 3 3 3xxy −= 4) x x xy + − = 1 1 . II. CỰC ĐẠI VÀ CỰC TIỂU 35) Tìm các điểm cực trò của hàm số bằng đạo hàm cấp 1: a) y = x 3 . b) y = 3x + x 3 + 5. c) y = x.e x .d) y = x xln . 36) Tìm các điểm cực trò của hàm số bằng đạo hàm cấp 2: a) y = sin 2 x với x∈[0; π ] b) y = x 2 lnx.c) y = x e x . 37) Xác đònh tham số m để hàm số y=x 3 −3mx 2 +(m 2 −1)x+2 đạt cực đại tại x=2. ( Đề thi TNTHPT 2004 − 2005) Kết quả : m=11 38) Đònh m để hàm số y = f(x) = x 3 3x 2 +3mx+3m+4 a.Không có cực trò. Kết quả : m ≥1 b.Có cực đại và cực tiểu. Kết quả : m <1 c. Có đồ thò (C m ) nhận A(0; 4) làm một điểm cực trò (đạt cực trò 4 khi x = 0). Hd: M(a;b) là điểm cực trò của (C): y =f(x) khi và chỉ khi: = ≠ = b)a(f 0)a(''f 0)a('f Kết quả : m=0 d.Có cực đại và cực tiểu và đường thẳng d qua cực đại và cực tiểu đi qua O. Kq : d:y = 2(m−1)x+4m+4 và m= −1 39) Đònh m để hàm số y = f(x) = x1 mx4x 2 − +− a. Có cực đại và cực tiểu. Kết quả : m>3 b.Đạt cực trò tại x = 2. Kết quả : m = 4 c.Đạt cực tiểu khi x = −1 Kết quả : m = 7 40) Chứng tỏ rằng với mọi m hàm số y = mx 1mx)1m(mx 422 − +−−+ luôn có cực trò. 41) Cho hàm số y = f(x) = 3 1 x 3 −mx 2 +(m 2 −m+1)x+1. Có giá trò nào của m để hàm số đạt cực tiểu tại x = 1 không? Hd và kq : Sử dụng đkc,đkđ. Không 42) Cho hàm số y = f(x) = 3 1 x 3 −mx 2 +(m+2)x−1. Xác đònh m để hàm số: a) Có cực trò. Kết quả: m <−1 V m > 2 b) Có hai cực trò trong khoảng (0;+∞). Kết quả: m > 2 c) Có cực trò trong khoảng (0;+∞). Kết quả: m <−2 V m > 2 duchoa_7804@yahoo.com 7 Nguồn Tài liệu: http://violet.vn/thpt-vinhchan-phutho 43) Biện luận theo m số cực trò của hàm số y = f(x) = −x 4 +2mx 2 −2m+1. Hd và kq : y’=−4x(x 2 −m) m ≤ 0: 1 cực đại x = 0 m > 0: 2 cực đại x= m ± và 1 cực tiểu x = 0 44) Đònh m để đồ thò (C) của hàm số y = f(x) = 1x mxx 2 + +− có hai điểm cực trò nằm khác phía so với Ox. Kết quả : m > 4 1 45) Đònh m để hàm số y = f(x) = x 3 −6x 2 +3(m+2)x−m−6 có 2 cực trò và hai giá trò cực trò cùng dấu. Kết quả : 4 17 − < m < 2 46) Chứùng minh rằng với mọi m hàm số y = f(x) =2x 3 −3(2m+1)x 2 +6m(m+1)x+1 luôn đạt cực trò tại hai điểm x 1 và x 2 với x 2 −x 1 là một hằng số. 47) Tìm cực trò của các hàm số : a) x 1 xy += . b) 6x2 4 x y 2 4 ++−= . c) y = 21x 3 +− 48) Đònh m để hàm số có cực trò : a) 2mxx3xy 23 −+−= . Kết quả: m<3 b) 1x 2mmxx y 22 − −++− = . Kết quả: m<−2 V m>1 49) Đònh m để hàm số sau đạt cực đại tại x=1: y = f(x) = 3 x 3 −mx 2 +(m+3)x−5m+1. Kết quả: m = 4 50) Cho hàm số : f(x)= 3 1 − x 3 −mx 2 +(m−2) x−1. Đònh m để hàm số đạt cực đại tại x 2 , cực tiểu tại x 1 mà x 1 < −1 < x 2 < 1. Kết quả: m>−1 51) Chứng minh rằng : e x ≥ x+1 với ∀x∈|R. duchoa_7804@yahoo.com 8 . đung một cực trị 6)- Cực trị hàm Phân thức bậc 2 / bậc 1 6.1-Sự tồn tại cực trị- đ ờng thẳng đi qua CĐ,CT BT1 Tìm m để các hàm số sau có cực trị 1) 1 2. cực trị thuộc góc (I) và một cực trị thuộc góc (III) trên mặt phẳng toạ độ 7)- Cực trị hàm Phân thức bậc 2 / bậc 2 BT1 Lập bảng biến thiên và tìm cực trị