1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu xây dựng thiết bị khảo sát địa điện

135 45 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 135
Dung lượng 6,28 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Vĩnh Thắng NGHIÊN CỨU XÂY DỰNG THIẾT BỊ KHẢO SÁT ĐỊA ĐIỆN LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội - 2020 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Vĩnh Thắng NGHIÊN CỨU XÂY DỰNG THIẾT BỊ KHẢO SÁT ĐỊA ĐIỆN Chuyên ngành: Vật lý Vô tuyến Điện tử Mã số: 9440130.03 LUẬN ÁN TIẾN SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS Nguyễn Đức Vinh TS Đỗ Trung Kiên XÁC NHẬN NCS ĐÃ CHỈNH SỬA THEO QUYẾT NGHỊ CỦA HỘI ĐỒNG ĐÁNH GIÁ LUẬN ÁN Chủ tịch hội đồng đánh giá Luận án Tiến sĩ Người hướng dẫn khoa học GS.TS Bạch Thành Công TS Nguyễn Đức Vinh Hà Nội - 2020 LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu cá nhân tơi hướng dẫn giáo viên hướng dẫn Các số liệu kết trình bày luận án chưa cơng bố cơng trình khác Các số liệu, thông tin, minh chứng so sánh kết từ nguồn tài liệu tham khảo phục vụ cho mục đích học thuật trích dẫn tài liệu theo quy định Tác giả luận án Trần Vĩnh Thắng LỜI CẢM ƠN Tôi xin chân thành cảm ơn TS Nguyễn Đức Vinh TS Đỗ Trung Kiên, nhờ hướng dẫn thầy tơi hồn thành nội dung nghiên cứu luận án Tôi xin cảm ơn Ban Lãnh đạo Khoa Vật lý điều kiện thuận tiện công việc để giúp thực nghiên cứu Cảm ơn đồng nghiệp Bộ môn Vật lý Vô tuyến - Khoa Vật lý với nhiều giúp đỡ dành cho tơi Với tình cảm kính trọng mình, tơi xin cảm ơn PGS.TS Nguyễn Thị Thục Hiền, PGS TS Lê Hồng Hà, PGS.TS Lê Thị Thanh Bình dành cho tơi tình cảm hỗ trợ tinh thần trước thực luận án Tôi chân thành cảm ơn ThS Đỗ Anh Chung giúp tơi q trình thí nghiệm trường Chân thành cảm ơn thầy Khoa Vật lý, Phòng Sau đại, học Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội hỗ trợ, giúp đỡ công tác trình thực luận án Và cuối cùng, tất dành cho gia đình tơi, lý động lực để tơi thực hồn thành việc luận án Tác giả luận án Trần Vĩnh Thắng MỤC LỤC LỜI CAM ĐOAN LỜI CẢM ƠN BẢNG VIẾT TẮT CHỮ VIẾT TẮT DANH MỤC CÁC HÌNH VẼ MỞ ĐẦU Chƣơng TỔNG QUAN VỀ PHƢƠNG PHÁP ẢNH ĐIỆN 13 1.1 Phương pháp ảnh điện ERT, EIT trường 14 1.1.1 Cơ sở phương pháp ảnh điện 14 1.1.2 Phương pháp đo điện trở suất chiều 18 1.1.3 Phương pháp đo IP theo miền thời gian 18 1.1.4 Phép đo theo miền tần số 20 1.1.5 Xử lý số liệu tồn dạng sóng 23 1.2 Thiết bị khảo sát ảnh điện 25 1.2.1 Thiết kế khảo sát 26 1.2.2 Thiết bị đo DC, IP, SIP 28 1.2.3 Tái tạo hình ảnh 31 1.3 Các yếu tố ảnh hưởng tới phép đo thí nghiệm trường 32 1.3.1 Ảnh hưởng điện cực 32 1.3.2 Ảnh hưởng nguồn nhiễu 34 1.3.3 Ảnh hưởng hiệu ứng ghép cặp EM 37 1.3.4 Phương pháp ước lượng DC, IP, CR 39 Kết luận chương 42 Chƣơng XÂY DỰNG THIẾT BỊ ĐO PHỔ TỔNG TRỞ CHO THÍ NGHIỆM HIỆN TRƢỜNG 43 2.1 Thiết kế, chế tạo thiết bị đo phổ tổng trở 44 2.1.1 Phần điện tử 44 2.1.2 Phần mềm thu thập liệu điều khiển 52 2.1.3 Phương pháp kiểm chuẩn - hiệu chỉnh EMCE 58 2.2 Đánh giá đặc trưng thiết bị 63 2.2.1 Đánh giá phòng thí nghiệm 63 2.2.2 Đánh giá trường 69 Kết luận chương 76 Chƣơng GIẢI PHÁP ỨNG DỤNG 77 3.1 Giải pháp triển khai nhanh thiết bị khảo sát địa điện ERT đa cực 77 3.1.1 Phần cứng 78 3.1.2 Phần mềm 80 3.1.3 Kiểm chuẩn 83 3.1.4 Thí nghiệm trường 85 3.1.5 Kết xử lý liệu 86 3.1.6 So sánh kết với SuperSting R1, AGI 88 Kết luận 90 3.2 Giải pháp nguồn lượng mặt trời cho thiết bị quan trắc địa điện 91 3.2.1 Đặt vấn đề 91 3.2.2 Giải pháp nguồn điện dùng lượng mặt trời 94 3.2.3 Kết thử nghiệm 95 Kết luận 96 3.3 Ước lượng mật độ phương tiện giới tham gia giao thông đường 96 3.3.1 Nhiễu địa điện phương tiện giao thông đường 96 3.3.2 Giải pháp ước lượng mật độ phương tiện qua nhiễu địa điện 101 Kết luận 107 Kết luận chương 108 KẾT LUẬN 109 DANH MỤC CƠNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 112 TÀI LIỆU THAM KHẢO 113 BẢNG VIẾT TẮT Đại lƣợng Đơn vị  - Điện trở suất .m a - điện trở suất biểu kiến .m m0 độ tích (nạp) điện mV/V mint độ tích (nạp) điện tích phân mV/V max góc pha MPA Mrad  - thời gian hồi phục Cole-Cole s c - Hệ số tần số mũ Cole-Cole c K - Geometric Factor Hệ số cấu hình cực, hệ số thiết bị Z- Tổng trở  - Ôm Y- Tổng dẫn Siemen - (mÔ) CHỮ VIẾT TẮT Giải nghĩa Chữ viết tẳt - Tiếng Anh ADC - Analog to Digital Converter Bộ chuyển đổi tương tự - số AVG - Average Trung bình BW - Band Width Băng thơng CPA - Constant Phase Angle Góc pha khơng đổi CR - Complex Resistivity Điện trở suất phức CNLS - Complex Non-linear Least Square Bình phương tối thiểu phi tuyến phức DAC - Digital to Analog Converter Bộ chuyển đổi số - tương tự DAQ - Data Acquisition Bộ thu thập liệu DC - Direct current Điện chiều DCIP- Direct current Induced Polarization Điện chiều phân cực cảm ứng EEC - Electrical Equivalent Circuit Mạch điện tương đương EMCE - Electromagnetic Coupling effect Hiệu ứng ghép cặp điện từ EMD - Electromagnetic Decoupling Tách cặp điện từ EIS - Electrical Impedance Spectroscopy Phổ tổng trở EIT - Electrical Impedance Tomography Ảnh tổng trở ERT - Electrical Resistance (Resistivity) Ảnh điện trở (suất) Tomography FD - Frequency domain Miền tần số FE - Field Experiment Thí nghiệm trường, thực địa FFT - Fast Fourier Transform Biến đổi Fourier nhanh GN - Geoelectrical Noise Nhiễu địa điện IP - Induced Polarization Phân cực cảm ứng KSTĐ Khảo sát thực địa LMA - Levenberg- Marquardt Algorithm thuật toán Levenberg- Marquardt LS - Least Square Bình phương tối thiểu MSE - Mean Square Error Sai số bình phương trung SIP - Spectral Induced Polarization Phổ phân cực cảm ứng (kích thích) SSIP - Spread Spectrum Induced Phân cực cảm ứng trải phổ Polarization TD - Time Domain Miền thời gian TNHT Thí nghiệm trường TVS - Transient Voltage Suppresor Bộ dập điện độ DANH MỤC CÁC HÌNH VẼ Hình 1.1 Sơ đồ ngun lý phép đo tổng trở trường 15 Hình 1.2 Minh họa phương pháp đo TDIP 19 Hình 1.3 Minh họa phương pháp đo theo miền tần số 21 Hình 1.4 Các cấu hình điện cực thông dụng hệ số K tương ứng 27 Hình 2.1 Sơ đồ khối thiết bị đo phổ tổng trở trường 45 Hình 2.2 Sơ đồ khối thu thập số liệu DAQ DNA-AI-211 45 Hình 2.3 Sơ đồ khối hình ảnh module DAC DNA-AO-308 47 Hình 2.4 Sơ đồ khối mạch xử lý tín hiệu tương tự 48 Hình 2.5 Sơ đồ nguyên lý mạch khuếch đại cách ly AD203SN 48 Hình 2.6 Sơ đồ nguyên lý mạch ASP 49 Hình 2.7 Sơ đồ nguyên lý hình ảnh mạch nguồn cao áp 51 Hình 2.8 Hình ảnh minh họa hệ thiết bị đo phổ tổng trở trường 52 Hình 2.9 Lưu đồ thuật toán phần mềm 53 Hình 2.10 Minh họa phần mềm đo phổ tổng trở (a) giao diện, (b) sơ đồ chương trình 54 Hình 2.11 Cách tính sai số Z 57 Hình 2.12 Module ước lượng tham số Zm() 58 Hình 2.13 Sơ đồ tương đương tổng trở có tính EMCE 59 Hình 2.14 Giản đồ pha tổng trở 61 Hình 2.15 Độ lớn pha Z theo EM 62 Hình 2.16 Biên độ pha Z theo CP với R =100 Ohm 63 Hình 2.17 Minh họa thiết bị thí nghiệm 64 Hình 2.18 Nhiễu thu liệu U I 64 Hình 2.19 Đặc trưng dòng - tần số 65 Hình 2.20 Đặc trưng tải nguồn phát dòng 66 Hình 2.21 Phổ biên độ pha M 67 Hình 2.22 Phổ phổ biên độ pha Cp 67 Hình 2.23 Phổ tổng trở: biên độ (a) pha (b) trở R 68 Hình 2.24 Phổ tổng trở mạch RC song song 69 Hình 2.25 Thí nghiệm trường 69 Hình 2.26 Phổ nhiễu khu vực khảo sát 70 Hình 2.27 Phổ nhiễu theo trục logarit 70 Hình 2.28 Phổ FFT dòng phát hiệu điện phản hồi 71 Hình 2.29 Dữ liệu thu tồn dạng sóng tần số phát khác 72 Hình 2.30 Phổ tổng trở cấu hình Wenner  Dipole - Dipole 73 Hình 2.31 Phổ tổng trở cường độ dòng phát khác 74 Hình 2.32 Kết đo ảnh hưởng tách cáp 74 Hình 2.33 Kết hiệu chỉnh EMCE 75 Hình 3.1 Sơ đồ khối hệ ERT 78 Hình 3.2 Hình ảnh minh họa thiết bị ERT trường 80 Hình 3.3 Phần mềm GUI 83 Hình 3.4 Sơ đồ minh họa mạng điện trở chuẩn 83 Hình 3.5 Biểu đồ phân bố kết đo với điện trở chuẩn 84 Hình 3.6 Hình ảnh minh họa thí nghiệm trường 85 Hình 3.7 Kết trình xử lý liệu 87 Hình 3.8 Hai cách ước lượng điện trở suất biểu kiến 88 Hình 3.9 Kết so sánh hai thiết bị 89 Hình 3.10 Hình ảnh 2D tạo phần mềm tái tạo hình ảnh Earth Imager 90 Hình 3.11 Sơ đồ khối thiết bị nguồn tối ưu lượng mặt trời 94 Hình 3.12 Nguyên lý hoạt động nguồn tối ưu lượng 95 Hình 3.13 Phổ tương quan nhiễu điện từ ô-tô gây 97 Hình 3.14 Phổ FFT theo tốc độ vòng tua động 98 Hình 3.15 Thiết bị dùng module ADS1282 EVM sơ đồi khối 99 Hình 3.16 Nhiễu thu thập liệu 31 bit 100 Hình 3.17 TD Phổ time-FFT nhiễu địa điện 334 Nguyễn Trãi 101 Hình 3.18 Mô tả phương pháp thiết bị ước lượng mật độ tốc độ trung bình 105 44 Fiandaca G., Madse, L.M and Maurya P.K (2018), "Re‐parameterisations of the Cole-Cole model for improved spectral inversion of induced polarization data", Near Surface Geophysics 16(4), pp 385-399 45 Fiandaca G., Olsson P.I., Larsen J.J., Dahlin T and Auken E (2016) "Doubling the spectrum of time-domain induced polarization by harmonic de-noising, drift/spike removal and tapered gating", 22nd European Meeting of Environmental and Engineering Geophysics, pp 774-778 46 Flores O., Adrian G., Jakob B.M and Williams K.H (2018), "Decay curve analysis for data error quantification in time-domain induced polarization imaging", Geophysics 83(2), pp E75-E86 47 Flores O., Adrián V., Milica T.T., Kemna A., Sapion H., Klaas N., Sethi R and Bastiaens L (2015), "Monitoring the injection of microscale zerovalent iron particles for groundwater remediation by means of complex electrical conductivity imaging", Environmental science & technology 49(9), pp 55935600 48 Friedel S., Jacobs F., Flechsig C., Reißmann C and Brunner I (1998), "Large-scale DC resistivity imaging at Merapi volcano", DGG-Sonderband 3(8), pp 1-5 49 G-class ASTM (2012), Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method G57-06, ASTM International, West Conshohocken, PA 50 G-class ASTM (2012), "Standard test method for measurement of soil resistivity using the two-electrode soil box method G187-12", ASTM International, West Conshohocken, PA 51 Gagnon H., Cousineau M., Adler A and Hartinger A.E (2010), "A resistive mesh phantom for assessing the performance of EIT systems", IEEE transactions on biomedical engineering 57(9), pp 2257-2266 52 Gazoty A., Fiandaca G., Pedersen J., Auken E and Christiansen A.V (2013), "Data repeatability and acquisition techniques for time-domain spectral induced polarization", Near Surface Geophysics 11(4), pp 391-406 117 53 Ghorbani A., Camerlynck C and Florsch N (2009), "CR1Dinv: A Matlab program to invert 1D spectral induced polarization data for the Cole-Cole model including electromagnetic effects", Computers & Geosciences 35(2), pp 255-266 54 Ghorbani A., Camerlynck C., Florsch N., Cosenza P and Revil A (2007), "Bayesian inference of the Cole-Cole parameters from time-and frequencydomain induced polarization", Geophysical prospecting 55(4), pp 589-605 55 Griffiths D.J (2005), Introduction to electrodynamics, Pearson Cambridge University Press, UK 56 Günther T., Rücker C (2012), "Electrical Resistivity Tomography (ERT) in geophysical applicationsstate of the art and future challenges", Procceeding 100 Years of Electrical Imaging, Paris, 9-10 July 2012, pp 33-36 57 Hallof P.G (1974), "The IP phase measurement and inductive coupling", Geophysics 39(5), pp 650-665 58 Hartley H.O (1961), "The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares", Technometrics 3(2), pp 269-280 59 Hartov A.M., Robert A.R., Fred R.K., Todd E., Osterman K.S., Williams D.B and Paulsen K.D (2000), "A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system", IEEE Transactions on Biomedical Engineering 47(1), pp 49-58 60 Hohmann G.W (1973), "Electromagnetic coupling between grounded wires at the surface of a two-layer earth", Geophysics 38(5), pp 854-863 61 Hsieh J.W., Tsai G R and Lin M.C (2003) "Using FPGA to implement a nchannel arbitrary waveform generator with various add-on functions" Proceedings of IEEE International Conference on Field-Programmable Technology, Tokyo, 17 Dec 2003, pp 296-298 62 Huisman J.A., Zimmermann E., Esser O., Haegel F., Treichel A and Vereecken H (2016), "Evaluation of a novel correction procedure to remove electrode impedance effects from broadband SIP measurements", Journal of Applied Geophysics 135(3), pp 466-473 118 63 Ingeman-Nielsen Thomas (2005), Geophysical techniques applied to permafrost investigations in Greenland, Ph.D Thesis, Technical University of Denmark 64 Ingeman-Nielsen, Thomas (2006), "The effect of electrode contact resistance and capacitive coupling on complex resistivity measurements", SEG Technical Program Expanded Abstracts 2006, pp 1376-1380 65 Ingeman N.T and Baumgartner F (2006), "Numerical modelling of complex resistivity effects on a homogenous half-space at low frequencies", Geophysical prospecting 54(3), pp 261-271 66 Ingeman N.T., Tomaškovičová S and Dahlin T (2016), "Effect of electrode shape on grounding resistances—Part 1: The focus-one protocol", Geophysics 81(1), pp WA159-WA167 67 Johnson I.M (1984), "Spectral induced polarization parameters as determined through time-domain measurements", Geophysics 49(11), pp 1993-2003 68 Junge Andreas (1996), "Characterization of and correction for cultural noise", Surveys in Geophysics 17(4), pp 361-391 69 Karaoulis M., Revil A., Tsourlos P., Werkema D.D and Minsley B.J (2013), "IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography", Computers & Geosciences 54(5), pp 164-170 70 Kemna Andreas (2000), Tomographic inversion of complex resistivity: Theory and application, Ph.D Thesis, Der Andere Verlag 71 Kemna A., Binley A., Cassiani G., Niederleithinger E., Revil A., Slater L., Williams K.H., Orozco A., Flores H and Hoerdt A (2012), "An overview of the spectral induced polarization method for near-surface applications", Near Surface Geophysics 10(6), pp 453-468 72 Kemna A., Binley A., Ramirez A and Daily W (2000), "Complex resistivity tomography for environmental applications", Chemical Engineering Journal 77(1-2), pp 11-18 119 73 Kim B.N., Myung J and Kim H.J (2018), "Inversion of time-domain induced polarization data based on time-lapse concept", Journal of Applied Geophysics 152(1), pp 26-37 74 Kuras O., Pritchard J.D., Meldrum P.I., Chambers J.E., Wilkinson P.B., Ogilvy R.D and Wealthall G.P (2009), "Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)", Comptes Rendus Geoscience 341(10), pp 868-885 75 LaBrecque D., Daily W (2008), "Assessment of measurement errors for galvanic-resistivity electrodes of different composition", Geophysics 73(2), pp F55-F64 76 Larsen J.J and Behroozmand A.A (2016), "Processing of surface-nuclear magnetic resonance data from sites with high noise levels", Geophysics 81(4), pp WB75-WB83 77 Larsen J.J., Dalgaard E and Auken E (2013), "Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering", Geophysical Journal International 196(2), pp 828-836 78 Levenberg K (1944), "A method for the solution of certain non-linear problems in least squares", Quarterly of applied mathematics 2(2), pp 164168 79 Li M., Wei W, Luo W and Xu Q (2013), "Time-domain spectral induced polarization based on pseudo-random sequence", Pure and Applied Geophysics 170(12), pp 2257-2262 80 Li Y and Oldenburg D.W (2000), "3-D inversion of induced polarization data", Geophysics 65(6), pp 1931-1945 81 Liu S, Tan C., Wu H., Dong F and Jia J (2018), "Wideband chirp excitation source for bioelectrical impedance spectrum tomography", Proceeding IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 14-17 May 2018, Houston, TX, USA, pp 1-5 120 82 Liu W., Chen R., Cai H and Luo W (2016), "Robust statistical methods for impulse noise suppressing of spread spectrum induced polarization data, with application to a mine site, Gansu province, China", Journal of Applied Geophysics 135(5), pp 397-407 83 Liu W., Chen R., Cai H., Luo W and Revil A (2017), "Correlation analysis for spread-spectrum induced-polarization signal processing in electromagnetically noisy environments", Geophysics 82(5), pp E243-E256 84 Loke M.H., Chambers J.E and Kuras O (2011), Instrumentation, electrical resistivity", Encyclopedia of Solid Earth Geophysics, Springer, Dordrecht 85 Loke M.H (2003), Rapid 2D Resistivity & IP Inversion using the leastsquares method, Geotomo Software, Malaysia 86 Loke M.H and Barker R.D (1995), "Least-squares deconvolution of apparent resistivity pseudosections", Geophysics 60(6), pp 1682-1690 87 Loke M.H., Chambers J.E., Rucker D.F., Kuras O and Wilkinson P.B (2013), "Recent developments in the direct-current geoelectrical imaging method", Journal of Applied Geophysics 95(2), pp 135-156 88 Lück E., Gebbers R., Ruehlmann J., and Spangenberg U (2009), "Electrical conductivity mapping for precision farming", Near Surface Geophysics 7(1), pp 15-26 89 Luo Y and Zhang G (1998), Theory and application of spectral induced polarization, Society of Exploration Geophysicists, Beijing 90 Macdonald J.R (2005), "Impedance spectroscopy: Models, data fitting, and analysis", Solid state ionics 176(25), pp 1961-1969 91 Major J and Silic J (1981), "Restrictions on the use of Cole-Cole dispersion models in complex resistivity interpretation", Geophysics 46(6), pp 916-931 92 Margo C., Katrib J., Nadi M and Rouane A (2013), "A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip", Physiological measurement 34(4), pp 391 93 Marquardt D.W (1963), "An algorithm for least-squares estimation of nonlinear parameters", Journal of the society for Industrial and Applied Mathematics 11(2), pp 431-441 121 94 Maurya P.K., Fiandaca G., Christiansen A.V and Auken E (2018), "Fieldscale comparison of frequency-and time-domain spectral induced polarization", Geophysical Journal International 214(2), pp 1441-1466 95 Meade M.L (1982), "Advances in lock-in amplifiers", Journal of Physics E: Scientific Instruments 15(4), pp 395 96 Milsom John (2003), Field geophysics 25, John Wiley and Sons, USA 97 Mo D.J., Qi Y.L., Di Q., Chen C.J., Zhang B.M and Liu J.W (2017), "Controlled-source electromagnetic data processing based on gray system theory and robust estimation", Applied Geophysics 14(4), pp 570-580 98 Morcelles K.F., Sirtoli V.G., Bertemes F.P and Vincence V.C (2017), "Howland current source for high impedance load applications", Review of Scientific Instruments 88(11), pp 114705-114711 99 Müller S., Massarani P (2001), "Transfer-function measurement with sweeps", Journal of the Audio Engineering Society 49(6), pp 443-471 100 Nordsiek S and Weller A (2008), "A new approach to fitting inducedpolarization spectra", Geophysics 73(6), pp F235-F245 101 Novak A., Simon L., Kadlec F and Lotton P (2009), "Nonlinear system identification using exponential swept-sine signal", IEEE Transactions on Instrumentation and Measurement 59(8), pp 2220-2229 102 Oldenborger G.A., Knoll M.D., Routh P.S and LaBrecque D.J (2007), "Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer", Geophysics 72(4), pp F177-F187 103 Olowofela J.A., Jolaosho V.O and Badmus B.S (2005), "Measuring the electrical resistivity of the earth using a fabricated resistivity meter", European Journal of Physics 26(3), pp 501 104 Olsson P.I (2016), Optimization of time domain induced polarization data acquisition and spectral information content, Report, Lund University 105 Olsson, P.I., Dahlin T., Fiandaca G and Auken E (2014) "Measuring Time Domain Spectral IP in the On-time-Decreasing Acquisition Time and Increasing Signal-to-noise Ratio", 20th European Meeting of Environmental and Engineering Geophysics, 14-18 September 2014, Athens, Greece 122 106 Olsson P.I., Dahlin T., Fiandaca G and Auken E (2015), "Measuring timedomain spectral induced polarization in the on-time: decreasing acquisition time and increasing signal-to-noise ratio", Journal of Applied Geophysics 123(2), pp 316-321 107 Olsson P.I., Fiandaca G., Larsen J.J., Dahlin T and Auken E (2016), "Doubling the spectrum of time-domain induced polarization by harmonic de-noising, drift correction, spike removal, tapered gating and data uncertainty estimation", Geophysical Journal International 207(2), pp 774784 108 Olsson P.I., Fiandaca G., Larsen J.J., Dahlin T and Auken E (2016) "Doubling the spectrum of time-domain induced polarization: removal of non-linear self-potential drift, harmonic noise and spikes, tapered gating, and uncertainty estimation", IP2016-4th International Workshop on Induced Polarization, 6-8 Jun 2016, Aarhus, Denmark 109 Oppermann F and Günther T (2018), "A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach", Geoscientific Instrumentation, Methods and Data Systems 7(1), pp 55-66 110 Padmanabhan V.N., Ramjee R and Mohan P (2013), "System for sensing road and traffic conditions", US Patents US8423255B2 111 Pelton W.H., Ward S.H., Hallof P.G., Sill W.R and Nelson P.H (1978), "Mineral discrimination and removal of inductive coupling with multifrequency IP", Geophysics 43(3), pp 588-609 112 Perepelitsa D.V (2006), Johnson noise and shot noise, Dept of Physics, MIT, USA 113 Perrone A., Lapenna V and Piscitelli S (2014), "Electrical resistivity tomography technique for landslide investigation: A review", Earth-Science Reviews 135(1), pp 65-82 123 114 Pham V.N., Boyer D.L., Mouël J.L., Chouliaras G and Stavrakakis G.N (1999), "Electromagnetic signals generated in the solid Earth by digital transmission of radio-waves as a plausible source for some so-calledseismic electric signals'", Physics of the earth and planetary interiors 114(3-4), pp 141-163 115 Policardi Franco (2011), "MLS and Sine-Sweep measurements", Università di Bologna Italia ELEKTROTEHNIŠKI VESTNIK 78(3), pp 91-95 116 Press W.H., Teukolsky S.A., Vetterling W.T and Flannery B.P (2007), Numerical recipes 3rd edition: The art of scientific computing, Cambridge University Press, UK 117 Quinn B.G (1997), "Estimation of frequency, amplitude, and phase from the DFT of a time series", IEEE transactions on Signal Processing 45(3), pp 814-817 118 Radic T (2004), "Elimination of cable effects while multi-channel SIP measurements", 10th EAGE European Meeting of Environmental and Engineering Geophysics, 06 September 2004, Utrecht, Netherlands 119 Radic T (2014), "Geoelectric Reference Technique, Efficient Tool to Eliminate External Noise in SIP Data", 20th European Meeting of Environmental and Engineering Geophysics, 14-18 September 2014, Athens, Greece 120 Radil T., Ramos P.M and Serra A.C (2005), "DSP based portable impedance measurement instrument using sine-fitting algorithms" IEEE Instrumentationand Measurement Technology Conference Proceedings, 1619 May 2005, Ottawa, Ont., Canada 121 Ramos P., Janeiro F and Radil T (2010), "Comparative analysis of three algorithms for two-channel common frequency sinewave parameter estimation: ellipse fit, seven parameter sine fit and spectral sinc fit", Metrology and Measurement Systems 17(2), pp 255-270 124 122 Ramos P.M., Janeiro F.M., Tlemỗani M and Serra A.C (2009), "Recent developments on impedance measurements with DSP-based ellipse-fitting algorithms", IEEE Transactions on Instrumentation and Measurement 58(5), pp 1680-1689 123 Ramos P.M and Serra A.C (2007), "Impedance measurement with sinefitting algorithms implemented in a DSP portable device", IEEE Transactions on instrumentation and measurement 57(1), pp 197-204 124 Ramos P.M and Serra A.C (2008), "A new sine-fitting algorithm for accurate amplitude and phase measurements in two channel acquisition systems", Measurement 41(2), pp 135-143 125 Rein A., Hoffmann R and Dietrich P (2004), "Influence of natural timedependent variations of electrical conductivity on DC resistivity measurements", Journal of hydrology 285(1-4), pp 215-232 126 Revil A., Binley A., Mejus L and Kessouri P (2015), "Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra", Water Resources Research 51(8), pp 6672-6700 127 Revil A., Karaoulis M., Johnson T and Kemna A (2012), "Some lowfrequency electrical methods for subsurface characterization and monitoring in hydrogeology", Hydrogeology Journal 20(4), pp 617-658 128 Reynolds J.M (2011), An introduction to applied and environmental geophysics, John Wiley & Sons, USA 129 Rosa E.B (1908), "The self and mutual inductances of linear conductors", Bulletin of the Bureau of Standards 4(2), pp 43-48 130 Routh P.S and Oldenburg D.W (2001), "Electromagnetic coupling in frequency‐domain induced polarization data: A method for removal", Geophysical Journal International 145(1), pp 59-76 131 Rücker C and Günther T (2011), "The simulation of finite ERT electrodes using the complete electrode model", Geophysics 76(4), pp F227-F238 125 132 Saraev A.K., Nikiforov A.B., Romanova N.E and Eremin I.S (2012), "Possibilities of electric field measurements in the audio frequency range using ungrounded electric sensors", Seismic Instruments 48(3), pp 209-213 133 Schlumberger C (1920), Study of underground electrical prospecting, Gauthier-Villars et Cie, Paris 134 Schmutz M., Ghorbani A., Vaudelet P and Blondel A (2014), "Cable arrangement to reduce electromagnetic coupling effects in spectral-induced polarization studiesReducing EM coupling effects for SIP", Geophysics 79(2), pp A1-A5 135 Schünemann J., Günther T and Junge A (2007), "3-dimensional subsurface investigation by means of large-scale tensor-type dc resistivity measurements", Proceedings of the th International Symposium on ThreeDimensional Electromagnetics, January 2007, Freiberg, Germany 136 Seigel H.O (1959), "Mathematical formulation and type curves for induced polarization", Geophysics 24(3), pp 547-565 137 Seigel H.O., Vanhala H and Sheard, S Nicholas (1997), "Some case histories of source discrimination using time-domain spectral IP", Geophysics 62(5), pp 1394-1408 138 Seoane F., Ferreira J., Sanchez J.J and Bragós R (2008), "An analog frontend enables electrical impedance spectroscopy system on-chip for biomedical applications", Physiological measurement 29(6), pp S267 139 Sheppard R.J., Jordan B.P and Grant E.H (1970), "Least squares analysis of complex data with applications to permittivity measurements", Journal of Physics D: Applied Physics 3(11), pp 1759 140 Shuai Z., Guizhi X., Huanli W., Duyan G and Weili Y (2006), "Multifrequency EIT hardware system based on DSP", International Conference of the IEEE Engineering in Medicine and Biology Society, 30 Aug.-3 Sept 2006, New York, USA 141 Slater L.D and Lesmes D (2002), "IP interpretation in environmental investigations", Geophysics 67(1), pp 77-88 126 142 Song Liu (1984), "A new IP decoupling scheme", Exploration Geophysics 15(2), pp 99-112 143 Stoica P and Moses R.L (1997), Introduction to spectral analysis 1, Prentice hall Upper Saddle River, NJ, USA 144 Streich R., Becken M and Ritter O (2013), "Robust processing of noisy land-based controlled-source electromagnetic data", Geophysics 78(5), pp E237-E247 145 Stummer Peter (2003), New developments in electrical resistivity imaging, Ph.D Thesis, University of Leoben, Austria 146 Stummer P., Maurer H and Green A.G (2004), "Experimental design: Electrical resistivity data sets that provide optimum subsurface information", Geophysics 69(1), pp 120-139 147 Stummer P., Maurer H., Horstmeyer H and Green A.G (2002), "Optimization of DC resistivity data acquisition: real-time experimental design and a new multielectrode system", IEEE Transactions on Geoscience and Remote Sensing 40(12), pp 2727-2735 148 Sun T., Holmes D., Gawad S., Green N.G and Morgan H (2007), "High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences", Lab on a Chip 7(8), pp 1034-1040 149 Sunde Erling Ditlef (1968), Earth conduction effects in transmission systems, Dover Publications Inc, USA 150 Supper R., RÖmer A., Kreuzer G., Jochum B., Ottowitz D., Ita A and Kauser S (2011), "The GEOMON 4D electrical monitoring system: current state and future developments ", Proceedings of GELMON 2011, Berichte Geol B, 93, pp 3-7 151 Supper R., Chambers J., Tsourlos P and Kim J.H (2014), "Special Issue on Geoelectrical Monitoring Foreword", Near Surface Geophysics 12(1), pp 127 152 Supper R., Ottowitz D., Jochum B., Kim J.H., Römer A., Baron I., Pfeiler S., Lovisolo M., Gruber S and Vecchiotti F (2014), "Geoelectrical monitoring: an innovative method to supplement landslide surveillance and early warning", Near Surface Geophysics 12(1), pp 133-150 153 Szarka László (1988), "Geophysical aspects of man-made electromagnetic noise in the earth—A review", Surveys in Geophysics 9(3-4), pp 287-318 154 Tadic S., Vukajlovic B.M (2014), "Apparatus, system and method for risk indicator calculation for driving behaviour and for reconstructing a vehicle trajectory", US Patents US20140358840A1 155 Telford W.M., Telford W.M., Geldart L.P and Sheriff R.E (1990), Applied geophysics 1, Cambridge University Press, UK 156 Toll D.G and Hassan A (2012), "Development of Automated Multielectrode Resistivity System for Laboratory Measurements", International Geophysical Conference and Oil & Gas Exhibition, 17 September 2012, Istanbul, Turkey 157 Trombley R.A., Plutti T.E and Prakah A., Kwaku O (2015), "On-board traffic density estimator", US Patents US9117098B2 158 Vanhala Heikki (1997), "Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method", Geophysical prospecting 45(2), pp 303-326 159 Vanhala H and Soininen H (1995), "Laboratory technique for measurement of spectral induced polarization response of soil sampies", Geophysical prospecting 43(5), pp 655-676 160 Vittorio A.R., Vaiana T.I., Vittoria C.M and Vincenzo P.G (2014), "Automated sensing system for monitoring of road surface quality by mobile devices", Procedia-Social and Behavioral Sciences 111(2), pp 242-251 161 Wait J.R (1984), "On modeling a well casing for resistivity and induced polarization", Geophysics 49(11), pp 2061-2063 162 Wait J.R and Gruszka T.P (1986), "On electromagnetic coupling “removal” from induced polarization surveys", Geoexploration 24(1), pp 21-27 128 163 Wait J.R (1959), "The variable-frequency method", Overvoltage research and geophysical applications, Elsevier, pp 29-49 164 Ward S.H (1988) "The resistivity and induced polarization methods", Symposium on the Application of Geophysics to Engineering and Environmental Problems, Society of Exploration Geophysicists, pp 109-251 165 Weigand M and Kemna A (2016), "Debye decomposition of time-lapse spectral induced polarisation data", Computers & geosciences 86(1), pp 3445 166 Wi H., Sohal H., McEwan A., Lee W., Eung J and Oh T.I (2013), "Multifrequency electrical impedance tomography system with automatic selfcalibration for long-term monitoring", IEEE transactions on biomedical circuits and systems 8(1), pp 119-128 167 Wilkinson A.J., Randall E.W., Long T.M and Collins A (2006), "The design of an ERT system for 3D data acquisition and a quantitative evaluation of its performance", Measurement Science and Technology 17(8), pp 2088-2099 168 Wilkinson P.B., Loke M.H., Meldrum P.I., Chambers J.E., Kuras O., Gunn D.A and Ogilvy R.D (2012), "Practical aspects of applied optimized survey design for electrical resistivity tomography", Geophysical Journal International 189(1), pp 428-440 169 Wilkinson P.B., Meldrum P.I., Chambers J.E., Kuras O and Ogilvy R.D (2006), "Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations", Geophysical Journal International 167(3), pp 1119-1126 170 Wilkinson P., Chambers J., Kuras O., Meldrum P and Gunn D.(2011), "Longterm time-lapse geoelectrical monitoring", First break 29(8), pp 77-84 171 Wynn J.C and Zonge K.L (1977), "Electromagnetic coupling", Geophysical prospecting 25(1), pp 29-51 172 Wynn J.C and Zonge K.L (1975), "EM coupling, its intrinsic value, its removal and the cultural coupling problem", Geophysics 40(5), pp 831-850 129 173 Xi X., Yang H., Zhao X., Yao H., Qiu J., Shen R., Wu H and Chen R (2014), "Large-scale distributed 2D/3D FDIP system based on ZigBee network and GPS", Symposium on the Application of Geophysics to Engineering and Environmental Problems, Environmental & Engineering Geophysical, pp 130-139 174 Yang H., Ryu S.B., Lee H.C., Lee S.G., Yong S.S and Kim J.H (2014) "Implementation of DDS chirp signal generator on FPGA", International Conference on Information and Communication Technology Convergence (ICTC), 15 December 2014, Busan, South Korea 175 Yasin M., Böhm S., Gaggero P.O and Adler A (2011), "Evaluation of EIT system performance", Physiological measurement 32(7), pp 851 176 Zhang Z (1997), "Parameter estimation techniques: A tutorial with application to conic fitting", Image and vision Computing 15(1), pp 59-76 177 Zhao Y., Zimmermann E., Huisman J.A., Treichel A., Wolters B., van Waasen S and Kemna A (2013), "Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects", Measurement Science and Technology 24(8), pp 085005085015 178 Zhe J., Greenhalgh S and Marescot L (2007), "Multichannel, full waveform and flexible electrode combination resistivity-imaging system", Geophysics 72(2), pp F57-F64 179 Zimmermann E., Kemna A., Berwix J., Glaas W., Münch H.M and Huisman J.A (2008), "A high-accuracy impedance spectrometer for measuring sediments with low polarizability", Measurement Science and Technology 19(10), pp 105603-105613 180 Zimmermann E., Kemna A., Berwix J., Glaas W and Vereecken H (2008), "EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments", Measurement Science and Technology 19(9), pp 094010-094019 130 181 Ziolkowski A., Hobbs B.A and Wright D (2007), "Multitransient electromagnetic demonstration survey in France", Geophysics 72(4), pp F197-F209 182 Zonge K., Wynn J and Urquhart S (2005), Resistivity, induced polarization, and complex resistivity, Society of Exploration Geophysicists, USA 183 Zonge K.L and Hughes L.J (1985), Effect of electrode contact resistance on electric field measurements, Society of Exploration Geophysicists, USA 184 Zonge K.L and Wynn J.C (1975), "Recent advances and applications in complex resistivity measurements", Geophysics 40(5), pp 851-864 185 Zonge K.L., Sauck W.A and Sumner J.S (1972), "Comparison of time, frequency, and phase measurements in induced polarization", Geophysical Prospecting 20(3), pp 626-648 Tiếng Đức 186 Tino Radic (2008), Instrumentelle und auswertemethodische Arbeiten zur Wechselstromgeoelektrik, Ph.D Thesis, Technische Universität Berlin, Brelin 131 ... nghệ đại chọn đề tài: Nghiên cứu xây dựng thiết bị khảo sát địa điện nhằm góp phần phát triển phương pháp giải pháp ứng dụng điều kiện KSTĐ Việt Nam Mục tiêu phạm vi nghiên cứu luận án: - Mục tiêu... ĐẠI HỌC KHOA HỌC TỰ NHIÊN - Trần Vĩnh Thắng NGHIÊN CỨU XÂY DỰNG THIẾT BỊ KHẢO SÁT ĐỊA ĐIỆN Chuyên ngành: Vật lý Vô tuyến Điện tử Mã số: 9440130.03 LUẬN ÁN TIẾN SĨ VẬT LÝ NGƯỜI HƯỚNG... khác với thí nghiệm phòng thí nghiệm như: phân cực điện cực, thiết kế cấu hình khảo sát, thiết bị đặc thù, chi phí thời gian khảo sát Nhiều nghiên cứu phát triển phương pháp EIT, ERT điều kiện TNHT

Ngày đăng: 29/05/2020, 16:13

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w