\ Ẽ ị d ĩ ị + VG* ~ ~ Ẽ t ) d x ịd x ị + Ẽ ị ã ị = [ d x ị d x ĩ ) d2w d2w dx\ dxị d 2w dxị d2w dxị Thay (10) (16) vào phương trình chuyển động (14) thu Ô4U/ ổ 4tư ô4ỉi> ( , d2(p w - D 1TTT + 2£>3 Q 0Q o + D2-^t - i dxj d x\ d x\ dx ị \ dx\ , ổ 2
, / ỠĨV \ 2"] VỠX2 _„ Ô2tu Me = —2D 66^ " — , ỠX1ỠX2 (2.2) where hk ( A i.ỉ> « ) = È (t , j = , , 6) * - V , are extensional and bending stiffnesses of the shell without stiffeners, «1 is the number of _(M composite layers of the shell, Q\~ are the transformed stiffnesses of k — th layer Note that in a multilayered symmetrically laminated material the coupling stiffnesses B tj are equal to zero and the exten sion al A i $ , A 2e and bending D 16 ) I ?26 stiffn esses are negligible compared to the other stiffnesses E- denotes the effective modulus in the axial direction of the corresponding stiffener; u ,v and w are displacements of the middle surface points along Xi, 12 and X3 = directions respectively ; kị — — , &2 — — are principal curvatures of the shell, and ÌỈ , i?2- radii of curvatures; R\ R2 A ;, A - cross section areas of the stiffeners; 11 , I - inertia moments of stiffener cross sections ; Zi z - eccentricities of the stiffener with respect to the middle surface of the shell; the torsional stiffness of the stiffener is disregarded; S1 S - s p a c i n s s o f th e lo n g it u d i n a l a n d tr a n s v e r s a l s tiffe n e rs r e s p e c tiv e ly N T denotes the recovery tensile force in SMA wừe, ứũs force does not generate a bending moment, because the wữe can move freely along the sleeves The motion equations of a laminated doubly curved shallow shell are d N i dNe d 2u d zw — J 0-7^ — J y dx\ d x2 d t2 0N e d N i _ T & v _ ÕX\ d x -2 ũ d t2 d x id t2 \ d x 2d t d2M l dx\ + f dw dxX dxi d n Ổ2M6 d2M dzia:Ẻ + ỡ ii dw\ t d / , + 1 + k*N7+ ơtì; dw\ N‘d ĩ ù + r 5a | + + ?= ôôÊ* Ô2UI Tf dt2+ 'Vỡ^ỡí2 + 3d ^ T ( d*w cPw \ Ihrft?) ~ 2lỡ ĩfỡ t2 + f o p i s j ’ (2'3) where Ji' , - t j w * + ( ± / V > ^ ) |+ ( g ] P ^ d z ) ịố , k- hk-i ( i = , , ) ri2 ,n are the number of composite layers and di, J q-q p - Qx 0*2 ’ L 22 ( v ) + 1/23 ( w ) + p ( 10 ) = J a - Q ^ — - q Z Ịỳ ị2 > L 3i ( u ) + L 32(v) + L 33(lơ) + p 3{w) + Qz(u, w) + R z { v , w ) = *rrtk l *2\ - q + N T( j ^ + s ) J d 2U) ( Jo ^ VỠI1ỠÍ2 / Ổ4UI + 'J (d x Ịd t* d 3U d 3V \ ỠX2ỠÍ2/ ỡ4^ \ d x ịd t2) ’( - ) where Lij are linear operators of the form ( E A i\ d2 L n = {A n + ^ r ) d S i + £ 12 L 13 — £31 — - d2 s6id x ị / \ Ỡ2 = £21 = (^12 + >166J ^- \dx7 (j4 u -T - ) k\ 4- Ai2^2 Si d EA\Zị Ỡ3 dx\ s1 dxị a2 a2 e a 2\ / iM = '4s6&? + r 22+i r / & ! r r _ I V /I II L 23 — //32 — — (-