1. Trang chủ
  2. » Giáo án - Bài giảng

Tổ 13 đ2 HSG hưng yên

12 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 1,36 MB

Nội dung

Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề chọn HSG tỉnh Hưng Yên Năm 2019 GIẢI CHI TIẾT ĐỀ CHỌN HSG TỈNH HƯNG YÊN NĂM 2019 MÔN TOÁN TIME: 180 PHÚT Câu I (5,0 điểm) Cho hàm số cực tiểu Cho hàm số y = x − − m x2 − x + y = x − mx + 2m − ( C ) với m tham số Tìm giá trị m để hàm số có với m tham số Gọi A điểm thuộc đồ thị ( C ) có hồnh độ Tìm giá trị m để tiếp tuyến đồ thị ( C ) A cắt đường tròn ( T ) : x2 + y = hai điểm phân biệt tạo thành dây cung có độ dài nhỏ Câu II (4,0 điểm) sin x  5  ÷÷ Giải phương trình   + 5cos2 x = x − + x + 2 Tính tích phân dx x x + + ( x + 1) x I= ∫ Câu III (5,0 điểm) Cho hình chóp S ABCD có đáy lượt trung điểm cạnh góc với mặt bên Cho tứ diện ABCD hình thoi cạnh 2a ·ABC = 60° Gọi E , F SC , SD Biết SA = SC = SD mặt phẳng ( ABEF ) lần vuông ( SCD ) , tính thể tích khối chóp S.ABCD theo a ABCD có độ dài cạnh AB = , AC = , AD = góc · = BAD · = 60° , CAD · = 90° Tính khoảng cách hai đường thẳng AB BAC Câu IV (2,0 điểm) Cho đa thức Biết phương trình f ( x ) = x + ax + bx + cx + f ( x) = có với a; b; c CD số thực không âm 4 nghiệm thực, chứng minh f ( 2018) ≥ 2019  y − y − y + = ln   Câu V (2,0 điểm) Giải hệ phương trình:  x − x = y + y − ( ) ( x + + x + ln Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! y2 +1 − y ) Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề chọn HSG tỉnh Hưng Yên Năm 2019 u1 =  * Câu VI (2,0 điểm) Cho dãy số xác định sau: un +1 = + 2unun +1 , ∀n ∈ ¥ Tìm số hạng thứ 10 dãy số cho Chứng minh u2019 số vô tỷ GIẢI CHI TIẾT ĐỀ CHỌN HSG TỈNH HƯNG YÊN NĂM 2019 MÔN TOÁN TIME: 180 PHÚT vietanhhda1983@gmail.com Câu I (5,0 điểm) Cho hàm số cực tiểu Cho hàm số y = x − − m x2 − x + y = x − mx2 + 2m − ( C ) với m tham số Tìm giá trị m để hàm số có với m tham số Gọi A điểm thuộc đồ thị ( C ) có hồnh độ Tìm giá trị m để tiếp tuyến đồ thị ( C ) A cắt đường tròn ( T ) : x2 + y = hai điểm phân biệt tạo thành dây cung có độ dài nhỏ Lời giải Xét y = 2x − − m x2 − 4x + TXĐ: ¡ y′ = − m ( x − 2) x2 − x + ,∀x ∈ ¡ +) Hàm số có cực tiểu trước hết phương trình y' = ⇔ m = y ' = có nghiệm x2 − 4x + (*) x− 2 x2 − 4x + g ( x) = Đặt x−2 Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC ( x − 2) g '( x) = x − 4x + ( x − 2) − ( x − 2) Đề chọn HSG tỉnh Hưng Yên Năm 2019 x2 − 4x + = −2 ( x − 2) x − 4x + < 0, ∀ x ≠ BBT: m > ⇔ Từ bảng biến thiên ta có phương trình (*) có nghiệm m < −2 x − 4x + − y '' = − m +) ( x − 2) −m x2 − 4x + = , ∀x ∈ ¡ 2 x − 4x + ( x − x + 5) x − x + m > ⇒ y '' < : Hàm số khơng có cực tiểu Với m < − ⇒ y '' > : Hàm số có cực tiểu Với Vậy m < − hàm số có cực tiểu Ta có Gọi A(1; m − 1) d tiếp tuyến đồ thị ( C ) A Phương trình đường thẳng d là: y = ( − 2m ) ( x − 1) + m − ⇔ ( − 2m ) x − y + 3m − = 3  I  ;1÷ Đường thẳng d ln qua điểm cố định   nằm đường tròn Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Đề chọn HSG tỉnh Hưng n Năm 2019 Do d ln cắt đường tròn hai điểm M , N Gọi H trung điểm MN Ta có: MN = 2MH = − OH ≥ − OI = MN ⇔ H ≡ I ⇔ OI ⊥ d ⇔ Vậy với m= 11 MN − 2m − 11 = ⇔ m= đạt giá trị nhỏ Thuanchy@gmail.com Câu II (4,0 điểm) sin x  5  ÷÷ Giải phương trình   + 5cos2 x = x − + x + 2 Tính tích phân dx x x + + ( x + 1) x I= ∫ Lời giải Tác giả:Vũ Thị Thuần; Fb:Xu Xu Ta có: sin x  5  5 0< < 1;0 ≤ sin x ≤ ⇒  ÷÷ ≤  ÷÷ =     > 1; − ≤ cos x ≤ ⇒ 5cos2 x ≤ 51 = sin x  5  ÷÷ Vậy   + 5cos2 x ≤ , dấu xảy  sin x = ⇔ sin x = ⇔ x = kπ ( k ∈ ¢ )   cos x = x − + x + = − x + x + ≥ − x + x + = , dấu xảy Lại có ( − x ) ( x + 5) ≥ ⇔ − ≤ x ≤ sin x  5  ÷÷ Do    x = kπ + 5cos2 x = x − + x + ⇔  ⇔ −5 ≤ x ≤ Vậy phương trình có hai nghiệm  x = −π x =  x = π ; x = dx dx I=∫ =∫ x x ( x + 1) x + x + 1 x x + + ( x + 1) ( ) Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC =∫ ( ) x + − x dx x ( x + 1) ( = x − x +1 ) Đề chọn HSG tỉnh Hưng Yên Năm 2019 2   1 = ∫ − dx ÷ =∫ dx − ∫ dx x x+1 1 x x + 1 = − − tongangoquyen@gmail.com Câu III (5,0 điểm) Cho hình chóp S ABCD có đáy lượt trung điểm cạnh góc với mặt bên Cho tứ diện ABCD hình thoi cạnh 2a ·ABC = 60° Gọi E , F SC , SD Biết SA = SC = SD mặt phẳng ( ABEF ) lần vuông ( SCD ) , tính thể tích khối chóp S.ABCD theo a ABCD có độ dài cạnh AB = , AC = , AD = góc · = BAD · = 60° , CAD · = 90° Tính khoảng cách hai đường thẳng AB BAC CD Lời giải Tác giả: Trần Tố Nga; Fb: Trần Tố Nga S F E I A D O H B Gọi M trung điểm M C CD , I giao điểm EF SM , H giao điểm AM DO Có ABCD hình thoi cạnh 2a , ·ABC = 60° nên ∆ ACD cạnh 2a ⇒ Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TỐN VD VDC Có SA = SC = SD nên hình chiếu S Đề chọn HSG tỉnh Hưng Yên Năm 2019 lên mặt phẳng ( ABCD ) trùng với H hay SH ⊥ ( ABCD ) Có ( ABEF ) ⊥ ( SCD ) Mà SM ⊥ EF (Do theo giao tuyến EF SM ⊥ CD ; EF // CD ) ⇒ SM ⊥ ( ABEF ) ⇒ SM ⊥ AI ⇒ ∆ AIM vuông I S I A +) Gọi K trung điểm H HM ⇒ IK K đường trung bình M ∆ SHM ⇒ Xét ∆ AIM vuông IK = AK KM ⇒ IK = I có IK ⊥ AM nên  2a a  a   15 + ÷÷ =  AH + HM ÷ HM =  = a     36 a 15 a 15 ⇒ SH = 1 a 15 2a V = SH S ABCD = ( 2a ) sin 60° = Vậy S ABCD 3 3 Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TỐN VD VDC Gọi Vì N trung điểm AM = AC điểm cạnh AC cho AB = , AC = , AD = ⇒ AB = AM = AN = Lại có · = BAD · = 60° , CAD · = 90° nên BM = CN = 3; MN = BAC ⇒ ∆ BMN Gọi vuông B O trung điểm MN Lại có O tâm đường tròn ngoại tiếp ∆ BMN AB = AM = AN ( = 3) ⇒ AO ⊥ ( BMN ) Vì AD , M Đề chọn HSG tỉnh Hưng Yên Năm 2019 ∆ BMN vuông Đặt hệ trục toạ độ AO = AN − ON = B Oxyz 2 BO ⊥ MN ; BO = MN = nên 2 hình vẽ với:  3      2 A  0;0; ;0;0 ÷÷ M  − ;0;0 ÷÷ B  0; ;0 ÷÷ ÷÷ N  O ( 0;0;0 ) ,  ,  2 ,  ,   +) Vì N trung điểm AD 3 2 D  ;0; − ÷ ÷ nên  uuur uuuur  2 AC = AM ⇒ AC = AM ⇒ C  − 2 ;0; − ÷ 3 ÷ +) Có  uuur uuur  ⇒  AB , CD  = ( −3; − 15; − 15 ) Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC uuur AC = − 2 ;0; − 2 ( Có Đề chọn HSG tỉnh Hưng Yên Năm 2019 ) uuur uuur uuur  ⇒  AB , CD  AC = + 30 = 36 uuur uuur uuur  AB , CD  AC   d ( AB , CD ) = uuur uuur  AB , CD  Áp dụng công thức   36 102 = 17 + 225 + 225 ⇒ d ( AB , CD ) = Rinnguyen1991@gmail.com Câu IV (2,0 điểm) Cho đa thức phương trình f ( x ) = x + ax + bx + cx + f ( x) = có với a; b; c nghiệm thực, chứng minh số thực không âm Biết f ( 2018) ≥ 20194 Lời giải Tác giả: Nguyễn Văn Rin; Fb: Nguyễn Văn Rin Nhận xét: Nếu x0 f ( x) = nghiệm phương trình x0 < (vì x0 ≥ f ( x0 ) > ) Gọi Khi nghiệm phương trình f ( x) = − x1 ; − x2 ; − x3 ; − x4 với xi > 0, ∀ i = 1;4 f ( x ) = ( x + x1 ) ( x + x2 ) ( x + x3 ) ( x + x4 ) ; f ( ) = ⇔ x1 x2 x3 x4 =   f ( 2018 ) = ∏ ( 2018 + xi ) = ∏  11+42 + 43 + + xi ÷  2018 lần ÷ i =1 i =1  Ta có  4 ( ) ≥ ∏ 2019.2019 xi = 20194.2019 x1 x2 x3 x4 = 20194 i =1 Dấu “=” xảy ⇔ x1 = x2 = x3 = x4 = tanznguyen.a1@gmail.com  y − y − y + = ln   Câu V (2,0 điểm) Giải hệ phương trình:  x − x = y + y − ( ) ( x + + x + ln y2 +1 − y ) Lời giải Tác giả: Nguyễn Trường An; Fb: Trường An Nguyễn Hãy tham gia STRONG TEAM TỐN VD-VDC- Group dành riêng cho GV-SV tốn! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC ) ( (  y − y − y + = ln x + + x + ln    x3 − x = y + y − ( ) ( 1) Cộng vế ( 2) Đề chọn HSG tỉnh Hưng Yên Năm 2019 ) y + − y ( 1) ta có: ) ( y + − y) + x − x ⇔ y − y − ln ( y + − y ) = x − x + ln ( x + + x ) ⇔ y − y + ln ( y + + y ) = x − x + ln ( x + + x ) ( 3) y + − y) ( y + + y) = ln y + + y ) = − ln ( (do ( nên ( f ( t ) = t − t + ln ( t + + t ) Xét hàm số ¡ y − y = ln ( x + + x + ln 3 3 2 2 y2 + − y )) t +1 t + f ′ ( t ) = 3t − + = 3t + −1 t2 +1 + t t2 +1 f ′′ ( t ) = 6t − t ( t + 1) t = ′′ f ( t) = ⇔  6 ( t + 1) =  2 (phương trình ( t + 1) = vơ nghiệm ( t + 1) ≥ > 1, ∀ t ∈ ¡ ) 3 Bảng biến thiên: t f ′′ ( t ) f ′( t) Từ bảng biến thiên ta có Ta có: −∞ +∞ − f ′ ( t ) ≥ 0, ∀ t ∈ ¡ ⇒ ( 3) ⇔ f ( x ) = f ( y ) ⇔ +∞ + +∞ Hàm số f ( t) đồng biến ¡ y = x Hãy tham gia STRONG TEAM TOÁN VD-VDC- Group dành riêng cho GV-SV toán! Trang Mã đề X Sản phẩm Group FB: STRONG TEAM TOÁN VD VDC Thay y= x vào ( 2) ta có: Đề chọn HSG tỉnh Hưng Yên Năm 2019 x3 − x = x + x − ⇔ x3 − x − x + = ( ) t = x− Đặt Phương trình ( ) trở thành:  1 t + ÷  3  1  1 −  t + ÷ −  t + ÷+ =  3  3 7 ⇔ t − t + = ( 5) 27 Với t< Thay t= 3t 3t 7 cos α

Ngày đăng: 30/03/2020, 17:57

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w