1. Trang chủ
  2. » Giáo án - Bài giảng

1 1 limits of a function

15 22 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 616,8 KB

Nội dung

1.1 Limit of a Function Chapter Dr Tran Huong Lan LIMIT=TENDENCY First example x x2 f ( x)  ? x 4 x2 as We create a table of values for x close to x x x2 x2  1.9 1.99 1.99 2.001 2.01 2.1 0.746 0.749 0.7499 || 0.75 0.750 0.751 0.756 After this lesson, you will know • • • • • Definition of limits How to estimate a limit When a limit exists and does not exist How to interpret limits How to estimate limits by graphing Informal definition of limit Example We create a table of values for x close to x sin x cos x -0.1 -0.01 -0.001 -0.01 -0.001 -0.0001 0 0.001 0.01 0.0001 0.001 0.1 0.01 0.995 0.99995 0.9999995 0.9999995 0.99995 0.995 Note that the limit at IS NOT the value of the function at One-sided limits • Right-hand limit lim f ( x)  L (x  c) x c • Left-hand limit lim f ( x)  L (x  c)  x c  lim h( x)  1 x 3 lim h( x)  x 3 lim h( x) does not exist x 3 One-sided limit theorm The two-sided limit lim f ( x)  L if and only if x c lim f ( x)  L  lim f ( x) x c x c Example: find limits from graphs Estimate the following limits lim f ( x)  x 0 lim g ( x) x 1 does not exist lim h( x)  2 x 1 Example: find limits from graphs Estimate the following limits when x  y sin x lim 1 x 0 x sin x x y x2 lim x 0 x does not exist y  sin limsin x 0 x does not exist x Infinite limits Formal definition of a limit Epsilon-delta definition of a limit L is the LIMIT The interval always contains c no matter how small  is Epsilon-delta definition of a limit L is the LIMIT The interval always contains c no matter how small  is Epsilon-delta definition of a limit NOT THE LIMIT L* The interval does not contain c ! ... Definition of limits How to estimate a limit When a limit exists and does not exist How to interpret limits How to estimate limits by graphing Informal definition of limit Example We create a table of. ..LIMIT=TENDENCY First example x x2 f ( x)  ? x 4 x2 as We create a table of values for x close to x x x2 x2  1. 9 1. 99 1. 99 2.0 01 2. 01 2 .1 0.746 0.749 0.7499 || 0.75 0.750 0.7 51 0.756 After this lesson,... table of values for x close to x sin x cos x -0 .1 -0. 01 -0.0 01 -0. 01 -0.0 01 -0.00 01 0 0.0 01 0. 01 0.00 01 0.0 01 0 .1 0. 01 0.995 0.99995 0.9999995 0.9999995 0.99995 0.995 Note that the limit at IS NOT

Ngày đăng: 17/03/2020, 11:34

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w