Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
1,45 MB
Nội dung
Tiết 3. TỔNG VÀ HIỆU CỦA HAI VECTƠ (tiết 1) 1.Tổng của hai vectơ: a r b r a r b r a b+ r r A B C Cho hai vectơ và . Lấy một điểm A tùy ý, vẽ và . Vectơ được gọi là tổng của hai vectơ và . Ta kí hiệu tổng của hai vectơ và là . Vậy: b r a r b r aAB = → BC b → = r AC → a r b r a r a b+ r r AC a b → = + r r a. Định nghĩa: Chú ý: Phép toán tìm tổng của hai vectơ còn được gọi là phép cộng vectơ. Ví dụ 1: Cho tam giác ABC. Xác định các vectơ tổng sau đây. .a AB CB −−> −−> + A B C .b AC BC −−> −−> + M AB BM −−> −−> = + AM −−> = AC CN −−> −−> = + AN −−> = A B C N Ví dụ 2: Cho hình bình hành ABCD (hình vẽ). Xác định các vectơ tổng sau đây D A B C O ,a AD DC −−> −−> + ,b AB BO −−> −−> + ,c BC CD −−> −−> + ,d DO OA −−> −−> + b. Quy tắc ba điểm: Với ba điểm A, B, C tùy ý ta luôn có: AC AB BC −−> −−> −−> = + AC −−> = BD −−> = AO −−> = DA −−> = Ví dụ 3: Cho hình bình hành ABCD (hình vẽ). Chỉ ra vectơ sau là tổng của hai vectơ nào ? D A B C O ,a AB −−> = ,b AC −−> = AO OB −−> −−> = + AC CB −−> −−> = + AD DB −−> −−> = + AD DC −−> −−> = + AB BC −−> −−> = + AO OC −−> −−> = + Chú ý: Cách sử dụng quy tắc ba điểm. Nhóm điểm Chèn điểm AB BC −−> −−> + AC −−> = MN −−> = MA AN −−> −−> + KP −−> = KB BP −−> −−> + IK KM −−> −−> + IM −−> = Chèn điểm A. Chèn điểm B. Ví dụ 3. Tính tổng: ) ) a MN NP PQ QR b IK KI → → → → → → + + + + Bài giải: IK KI → → + MN NP PQ QR → → → → + + + MP PQ QR → → → = + + a) MP PR → → = + MR → = b) 0II → → = = *Tổng quát: Cho n điểm A 1 , A 2 … A n . Khi đó ta có: 1 2 2 3 1 1 n n n A A A A A A A A → → → → − + + + = Ví dụ 4. Cho hình bình hành ABCD. Chứng minh: AB AD AC → → → + = Bài giải AB AD → → + AB BC → → = + AC → = Ta có: => đpcm 2. Quy tắc hình bình hành. D A B C Quy tắc hình bình hành: Nếu ABCD là hình bình hành thì: AB AD AC → → → + = Ví dụ 5: 2 ) 3 A AC → )B AC → 1 ) 3 C AC → ) 2D AC → AB AC AD → → → + + Cho hình bình hànhABCD. Tính tổng sau *Cách dựng vectơ tổng bằng quy tắc hình bình hành: a b → → + + Dựng ,AB a AD b → → = = r r + Dựng hình bình hành ABCD →→→→ +=+ ADABba + Kết luận D A B C a r b r AC → = [...]... B)a 3 3 C )a 2 D) đáp số khác → → b) Độ dài AB + BC bằng bao nhiêu? A)a B )2a C )a 3 3 D)a 2 → → → c) Độ dài AB + BC + CA bằng bao nhiêu? A)0 B)3a 3 C )3a D) Đáp số khác Hướng dẫn về nhà: * Cách dựng tổng hai vectơ bằng quy tắc hình bình hành và quy tắc ba điểm * Các tính chất của phép cộng vectơ * BTVN: 1, 2, 4 . Tiết 3. TỔNG VÀ HIỆU CỦA HAI VECTƠ (tiết 1) 1 .Tổng của hai vectơ: a r b r a r b r a b+ r r A B C Cho hai vectơ và . Lấy một điểm A tùy ý, vẽ và . Vectơ. và . Lấy một điểm A tùy ý, vẽ và . Vectơ được gọi là tổng của hai vectơ và . Ta kí hiệu tổng của hai vectơ và là . Vậy: b r a r b r aAB = → BC b → = r