1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Nam Định

5 125 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 148,09 KB

Nội dung

Mời các bạn học sinh cùng tham khảo Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Nam Định sau đây để biết được cấu trúc đề thi cũng như những nội dung chính được đề cập trong đề thi để từ đó có kế hoạch học tập và ôn thi một cách hiệu quả hơn. Chúc các bạn ôn tập kiểm tra đạt kết quả cao!

SỞ GIÁO DỤC VÀ ĐÀO TẠO NAM ĐỊNH ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2019 – 2020 Mơn thi: TỐN Thời gian làm bài: 120 phút Phần 1: Trắc nghiệm (2,0 điểm) Hãy chọn phương án trả lời viết chữ đứng trước phương án vào làm Câu Tìm tất giá trị m để hàm số y = (1 – m)x + m + đồng biến R A m > B m < C m < -1 D m > -1 Câu Phương trình x − 2x − = có nghiệm x1; x Tính x1 + x A x1 + x = B x1 + x = C x1 + x = −2 D x1 + x = −1 Câu Cho điểm M(xM; yM) thuộc đồ thị hàm số y = -3x Biết xM = - Tính yM A yM = B yM = -6 C yM = -12 D yM = 12 x − y = Câu Hệ phương trình  có nghiệm ? 3x + y = A B C D Vô số Câu Với số a, b thoả mãn a < 0, b < biểu thức a ab A − a b B − a b C a b D − a b Câu Cho ∆ABC vng A có AB = 3cm, AC = 4cm Tính độ dài đường cao AH ∆ABC 12 12 B AH = cm C AH = cm D AH = cm A AH = cm Câu Cho đường tròn (O; 2cm) (O’; 3cm) biết OO’ = 6cm Số tiếp tuyến chung đường tròn A B C D Câu Một bóng hình cầu có đường kính 4cm Thể tích bóng 32 32 256 256 A π cm B cm C π cm D cm 3 3 Phần 2: Tự luận (8,0 điểm) Câu (1,5 điểm) 1) Rút gọn biểu thức A = − 2 − + 2  − +  a −3 a −9  a +3  2) Chứng minh  ( ) a + = Với a > 0, a ≠ (với m tham số) Câu (1,5 điểm) Cho phương trình x2 – (m – 2)x - = (1) 1) Giải phương trình (1) với m = 2) Chứng minh với giá trị m phương trình ln có nghiệm phân biệt 3) Gọi x1, x2 nghiệm phương trình Tìm giá trị m để x22 − x1x2 + (m − 2)x1 = 16  x − xy + y − = Câu (1,0 điểm) Giải hệ phương trình   x + xy − 2y = 4(x − 1) Câu (2,5 điểm) Qua điểm A năm ngồi đường tròn (O) vẽ tiếp tuyến AB, AC đường tròn (B, C tiếp điểm Gọi E trung điểm đoạn AC, F giao điểm thứ hai EB với (O) 1) Chứng minh tứ giác ABOC tứ giác nội tiếp ∆CEF ∆BEC 2) Gọi K giao điểm thứ hai AF với đường tròn (O) Chứng minh BF.CK = BK.CF 3) Chứng minh AE tiếp tuyến đường tròn ngoại tiếp ∆ABF Câu (1,5 điểm) Xét số x, y, z thay đổi thoả mãn x3 + y3 + z3 – 3xyz = Tìm giá trị nhỏ biểu thức P = (x + y + z) + 4(x + y + z − xy− yz − zx) Hết HƯỚNG DẪN GIẢI ĐỀ THI VÀO 10 TỈNH NAM ĐỊNH 2019 -2020 I/ Trắc nghiệm Câu Đáp án B A C B D C D A II/ Tự luận Câu 1: 1) A = − 2 − + 2 = − 2.1 + − − 2.1 + = ( − 1) − ( + 1) = −1 − +1 = − − − = −2 2) Với a > 0, a ≠ Ta có:   VT =  − +  a −3 a −9  a +3 (  2( a − 3) − ( a + 3) +  a + =   ( a − 3)   ) ( a +3 ) a −6− a −3+ a −3 = = = VP a −3 a −3   − + Vậy   a + = Với a > 0, a ≠ a −3 a −9  a +3 = ( ) Câu 2:  x = −1 + 1/ Với m = ta có phương trình: x + 2x − = ⇔   x = −1 − Vậy m =0 phương trình có hai nghiệm phân biệt x = −1 + x = −1 − 2/ Ta có ∆ = (m − 2) − 4.1.(−6) = (m − 2) + 24 > với m Vậy phương trình ln có hai nghiệm phân biẹt với m 3) Phương trình ln có hai nghiệm phân biẹt với m  x1 + x = m − Theo Vi-ét ta có:   x1x = −6 Ta có : x22 − x1x2 + (m − 2)x1 = 16 ⇔ x22 − x1x2 + (x1 + x2 )x1 = 16 ⇔ x22 − x1x2 + x12 + x1x2 = 16 ⇔ (x1 + x2 )2 − 2x1x2 −16 = ⇔ (m − 2)2 − 2.(−6) −16 = m − = m = ⇔ (m − 2)2 = ⇔  ⇔ m − = −2 m = Vậy m = 0, m = phương trình có nghiệm phân biệt thỏa mãn: x22 − x1x2 + (m − 2)x1 = 16 Câu 3:  x − xy + y − = (1)  (2)  x + xy − 2y = 4(x − 1) Ta có: (2) ⇔ x + xy − 2y − 4x + = ⇔ (x − 4x + 4) + xy − y = ⇔ (x − 2) + y(x − 2) = ⇔ (x − 2)(x − + y) = x − = x = ⇔ ⇔ x − + y = x = − y + Thay x = vào phương trình (1) ta được: – 2y + y – = y = -3 + Thay x = – y vào phương trình (10 ta (2 − y) − (2 − y)y + y − = ⇔ − 4y + y − 2y + y + y − = ⇔ 2y − 5y − = Phương trình 2y − 5y − = có ∆ = (−5) − 4.2.(−3) = 49 > 0, Ta có: y1 = ∆ =7 5+7 5−7 = 3; y = =− 4 + y = ⇒ x = − = −1 1 + y = − ⇒ x = 2+ = 2   5 Vậy hệ phương trình có nghiệm (x; y) ∈ (−1; 3), (2; − 3),  ; −    2  Bài 4: I B K F O H A E C 1) Chứng minh tứ giác ABOC tứ giác nội tiếp ∆CEF ∆BEC Có AB, AC ác tiếp tuyến đường tròn (O) , B C ác tiếp điểm AB ⊥ OB, AC ⊥ OC ⇒ ABO = 900 , ACO = 900 Tứ giác ABOC có ABO + ACO = 900 + 900 = 1800 nên tứ giác ABOC nội tiếp đường tròn + Đường tròn (O) có: EBC góc nội tiếp chắn cung CF ECF góc tạo tia tiếp tuyến AC dây cung CF ⇒ EBC = ECF (góc nội tiếp góc tạo tia tiếp tuyến dây cung chắn cung CF) Xét ∆CEF ∆BEC có BEC góc chung EBC = ECF (chứng minh trên) ∆CEF ∆BEC (g g) 2) Chứng minh BF.CK = BK.CF Xét ∆ABF ∆AKB có BAK góc chung ABF = AKB (góc nội tiếp góc tạo tia tiếp tuyến dây cung chắn cung BF) ∆ABF ∆AKB (g g) ⇒ BF AF = (1) BK AB Chứng minh tương tự ta có: ∆ACF CF AF = CK AC ∆AKC (g g) (2) Mà AB = AC (t/c tiếp tuyến cắt (O)) Từ (1), (2) (3) ⇒ (3) BF CF = ⇒ BF.CK = BK.CF BK CK 3) Chứng minh AE tiếp tuyến đường tròn ngoại tiếp ∆ABF Có ∆ECF ⇒ ∆EBC (Chứng minh câu a) EC EF = ⇒ EC = EB.EF EB EC Mà EC = EA (gt) ⇒ EA = EB.EF ⇒ Xét ∆BEA EA EF = EB EA ∆AEF có: EA EF = EB EA AEB góc chung ∆BEA ∆AEF (c.g.c) ⇒ B1 = A1 ( hai góc tương ứng) Gọi I tâm đường tròn ngoại tiếp ABF Kẻ IH AF IFA cân I (vì IA = IF bán kính (I) ) ⇒ ɵI1 = 1 FIA = AF 2 Lại có: B1 = AF (tính chất góc nội tiếp) ⇒ ɵI1 = B1 Mà B1 = A1 ( chứng minh trên) ⇒ ɵI1 = A1 Mặt khác ɵI1 + IAH = 900 ⇒ IAE = A1 + IAH = 900 AE IA mà A (I) AE tiếp tuyến đường tròn ngoại tiếp ∆ABF Câu 5: Ta có: x³ + y³ + z³ - 3xyz = (x + y)³ - 3xy(x - y) + z³ - 3xyz = [(x + y)³ + z³] - 3xy(x + y +z ) = (x + y + z)³ - 3z(x + y)(x + y + z) - 3xy(x – y - z) = (x + y + z)[(x + y + z)² - 3z(x + y) - 3xy] = (x + y + z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) = (x + y + z)(x² + y² + z² - xy - xz - yz) = Đặt x + y + z = a b = x² + y² + z² - xy - xz – yz a.b = 1 P = (x + y + z) + 4(x + y + z − xy− yz − zx) = a + 4b 2 1 = a + 2b + 2b ≥ 3 a 2b.2b = 2 x + y + z = a = x + y + z = ⇔ Dấu “ = “ xảy  ⇔ 3 b = x² + y² + z² − xy − xz – yz =  x + y + z – 3xyz = Vậy giá trị nhỏ P GV CÙ MINH QUẢNG – THCS YÊN PHONG – Ý YÊN – NAM ĐỊNH ... Ta có: x³ + y³ + z³ - 3xyz = (x + y)³ - 3xy(x - y) + z³ - 3xyz = [(x + y)³ + z³] - 3xy(x + y +z ) = (x + y + z)³ - 3z(x + y)(x + y + z) - 3xy(x – y - z) = (x + y + z)[(x + y + z)² - 3z(x + y) -. ..HƯỚNG DẪN GIẢI ĐỀ THI VÀO 10 TỈNH NAM ĐỊNH 2019 -2 020 I/ Trắc nghiệm Câu Đáp án B A C B D C D A II/ Tự luận Câu 1: 1) A = − 2 − + 2 = − 2.1 +... (x + y + z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) = (x + y + z)(x² + y² + z² - xy - xz - yz) = Đặt x + y + z = a b = x² + y² + z² - xy - xz – yz a.b = 1 P = (x + y + z) + 4(x + y

Ngày đăng: 04/03/2020, 12:49

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w