Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
502 KB
Nội dung
TiÕt 25 - Gi¶i tÝch 12 III. Khảo sát hàm số luỹthừa y = x Em hãy điền vào chỗ trống để được khẳng định đúng: Cho hàm số y = x Nếu , > 0, tập xác định của hàm số là: . Nếu , tập xác định của hàm số là: . Nếu , 0, tập xác định của hàm số là: . . . 1 2 3 D = (0 ; +) \{0} III. Khảo sát hàm số luỹthừa y = x Em hãy tìm giao của ba tập hợp nói trên ? Trong trường hợp tổng quát, ta chỉ khảo sát hàm số y = x trên khoảng (0; + ) III. Khảo sát hàm số luỹthừa y = x y = x , > 0 y = x , < 0 1. Tập khảo sát: (0 ; +) 1. Tập khảo sát: (0 ; +) 2. Sự biến thiên: 2. Sự biến thiên: y' = x - 1 < 0 x >0 y' = x - 1 > 0 x >0 Giới hạn đặc biệt: 0 lim 0; lim . x x x x + + = = + Tiệm cận: không có Giới hạn đặc biệt: 0 lim ; lim 0. x x x x + + = + = Tiệm cận: có hai tiệm cận: Ox là TCN và Oy là TCĐ của đồ thị 3. Bảng biến thiên x y' y 0 + + 0 + 3. Bảng biến thiên x y' y 0 + - + 0 III. Khảo sát hàm số luỹthừa y = x 4. Đồ thị của hàm số trên khoảng (0 ; +) O x y 1 1 > 1 = 1 0 < < 1 = 0 < 0 Đồ thị của hàm số luỹthừa y = x luôn đi qua điểm (1; 1) III. Khảo sát hàm số luỹthừa y = x 4. Đồ thị của hàm số trên khoảng (0 ; +) Chú ý: Khi khảo sát hàm số luỹthừa với số mũ cụ thể ta phải xét hàm số đó trên toàn bộ TXĐ của nó. Dưới đây là đồ thị của ba hàm số : y = x 3 ; y = x -2 ; y = x x y O x y O y = x 3 y = x -2 x y O y = x III. Khảo sát hàm số luỹthừa y = x x y O x y O y = x 3 y = x -2 x y O y = x Dựa vào đồ thị, em hãy phát biểu về TXĐ, tính chẵn, lẻ, tính đối xứng và tiệm cận của các hàm số tương ứng nói trên ? III. Khảo sát hàm số luỹthừa y = x Ví dụ 3: Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x -3 Giải: 1. TXĐ: \{0} 2. Sự biến thiên: Chiều biến thiên: y' = 4 3 x y' < 0 trên tập xác định nên hàm số nghịch biến trên các khoảng (- ; 0) và (0; + ) Giới hạn: 0 0 lim ; lim . x x y y + = = + lim 0; lim 0. x x y y + = = đồ thị có tiệm cận đứng là trục tung và tiệm cận ngang là trục hoành III. Khảo sát hàm số luỹthừa y = x Ví dụ 3: Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x -3 Giải: - Bảng biến thiên : x y - y 0 - - - + 0 + 0 3. Đồ thị: Hàm số đã cho là lẻ nên đồ thị đối xứng qua gốc toạ độ x y O III. Khảo sát hàm số luỹthừa y = x Bảng tóm tắt các tính chất của hàm số luỹthừa y = x trên khoảng (0; + ) > 0 > 0 < 0 < 0 Đạo hàm Đạo hàm Chiều biến thiên Chiều biến thiên Tiệm cận Tiệm cận Đồ thị Đồ thị y' = x -1 y' = x -1 Hàm số luôn đồng biến Hàm số luôn nghịch biến Không có TCN là trục Ox TCĐ là trục Oy Đồ thị luôn đi qua điểm (1; 1)