Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
1,56 MB
Nội dung
Loại 1: VIẾT PHƯƠNG TRÌNH DAO ĐỘNG: x A t ω ϕ = + CON LẮC LÒ XO !" K f T m π ω π = = = #$% !"& ' ()* +$,-./0123 v A x ω = + 4567/28#$ 9 123:(4 "$.V A ω = ('5%;<5=,>(? CD A = @A2%BC "$. "$.F KA= (DEF F9 KA m A ω = !" ϕ ?A$;,'5GHI$,J529/.9. /9 K & x A v ϕ ϕ ω ϕ = ⇒ = = − L M,N2#B2+$,-2#B2+$,-OD;%$,-/O32+$,-D;(4P$12QR5,' I;G62!2A+'5%P$2#B2+$,-Q S M,N32T$29QR5,'I;G62!+32T$2UV*QT+D)12IW2 ,J5%$,-QR5G6.,N,E2T,X"12IW2,J5%$,-2!+32T$D)12: (42Y'5%G,O π ϕ = − Z ()* [\(4 "$.x V A ω = ⇒ = [\N2#]I^ x A v = ± ⇒ = [ F2"$.9F%"$.9F 4;211%5 Dạng : Viết phương trình của daođộng điều hòa Bài 1_-212%$,-,'5`$a5Gb9;I^,-&9"Q22#!%$,-P$12 2#2#TE$5 $(+32T$29D)12ODV,-.9&N2#]I^% I(+32T$29D)12ODV,-.9c&N2#]I^d" (+32T$29D)12,<5$N2#]dIeY'5%;'5d" %(+32T$29D)12ODV,-.9 A QY'5%;'5d" Y(+32T$29D)12ODV,-.9 A − QY'5%;'5d" #$ f(+32T$29D)12ODV,-.9 ± A QY'5%;'5d" (+32T$29D)12ODV,-.9 ± A QY'5%;'5d" ghV2!"#$<5VD512P$H22#!%$,-;IX5%iO2#^2#B2+$,-Q Câu 2._-212%$,-,'5`$a S ω = #$% Q>N2#]dIe2#5V'12"-2123/S" 2Y '5%Q2#!%$,-D; &Q.9/S2[π " 4Q .9/S2" C. .9/SS2cπ " ?Q.9/SS2" Câu 3._-212%$,-,'5`$a ω = #$% Q(32T$29D)12ODV,-.9 " ;,$,'N2#]dIea123/ " Q@jV9" Q 2#!%$,-P$<58J5O %> &Q.9L 2[π L4Q.9L 2[π (Q.9L 2[Sπ Z?Q.9L 2[π Câu 4:_-212%$,-aI^,-Z"Q@)29/DW<5$N2#]OD,-.9 "2Y'5 %a$23O,-Da " Q2#!%$,-P$DWD; &Q.9Z2"4kQ 2 . Z L π = − ÷ "(Q 2 . Z L π = + ÷ "?Q . Z 2 π = + ÷ " Câu 5: _-2j2,X"OG3DE"9%$,-,'5`$2#^,>2l%;L"/2J3SgmQ@)29 /j2,X":N2#]dIe;IW2,J5,2Ya%P$<5=,>Q4X5202+$,-P$122Y2T $ &Q.9n2cn " 4Q.9n2" (Q.9Ln2[n " ?Q.9LSn2" Câu 6: _-212OG3DE"9G%$,-,'5;a5G!9Q12<5$N2#]dIea1 23 9/L" Qo29/12<5$N2#]OD,-.9S"E'5%<5p,>Q@jVπ 9Q 2#!%$,-P$12D; Câu 7($%$,-,'5;U/U5G!9Q?$,-20j2OD,-:2T,X" I$,J529IeI^,-%$,-;Ie"Q?$,-20$OI^,-Ie "/:2T,X"I$ ,J5D,-Ie;123O2#Nd"Q 22#!%$,-P$$%$,-,hQ &. 9π2"/. 9 π2"4. 9π2"/. 9c π2" (. 9cπ2"/. 9 π2"?. 9π2"/. 9 π2" Câu 8:_-2DWD`.q"<58J5r;O,-0G9R "Q(DW2AH%$,-2 /LQ(+32T$D;D)<58J5OD,-";,$5VX,-2Y'5%P$2#B2+$,- a123O,-Da L " 2!2#!%$,-P$<58J5D; A. . L2c " = π B. . Z2[ Z" = π C. . L2[ Z" = π D. . Z2c " = π Câu 9: _-212OG3DE"9G%$,-,'5;a5G!9Q12<5$N2#]dIea1 23 9/L" Qo29/12<5$N2#]OD,-.9S"E'5%<5p,>Q@jVπ 9Q 2#!%$,-,'5;P$12D; #$ Câu 15._-212%$,-,'5;0$5 2!,-D>Ie2Qs5h,T12,,E 2#/SD;Z"Q(+32T$D)12<5$N2#]dIe2Y'5d"Q2#!%$,-P$ 12D; A. x c cm π π = + B. x c cm π π = − C. L L x c cm π π = − D. L L x c cm π π = + t Câu 10:_-2D`.72#Y2l,0O'5%;2A^D;"Q#Y;,J5%aD`."-212r2! 2jVHdIeGD`.h"Qou122Y2l,02aGD`.O'5%;L"/ #q2#5V'12123" aD^2#^12%$,-,'5;Q(+32T$G12,E 2#5V'123/'5%aD^Q@jV smg = Q2#!%$,-P$12D; &Q.9 t "4Q.9 t "(Q.9 L π −t "?Q.9 L π +t " Câu 46:_-212%$,-,'5;G<5$N2#]dIe12O1239" ;$23A,>P$ 12D;$9" Q(+29D;D)12<5$N2#]dIe2Y'5d"P$2#B2>,-/2#!%$,- P$12D; A. .92"QB. .92[π"QC. .92cπ "QD. .92[ π "Q Câu 37:_-212%$,-,'5;G<5$N2#]dIe12O1239" Q$23A,>P$12 D;$ "$. 9" Q(+29D;D)12<5$N2#]dIe2Y'5d"P$2#B2>,-Q2#!%$,- P$12D; A. .92[n"QB. .92[n "QC. .92vn "QD. .92 "Q Q2#!%$,-;I20a2T,X"29/S12OD,-.9cS"K &Q.9Sπ2[π"w4Q.9Sπ2"w(Q.9Sπ2[π "w?Q.9Sπ2" 6._-2j2,X"2AH%$,-,'5;2Ye"$2#^,>2l&49$a5G!9 Q(+32T$D)29/Gj2,X"e":D,-.9$ ;123O2#Nd"Q2#!%$ ,-P$j2,X"O%>&Q.9$π2[Sπ Zw4Q.9$π2[π Zw(Q.9$π2[Sπ Z w?Q.9$π2[π Z Câu 17:_-212OG3DE"9G%$,-,'5;a5Gb9Q12<5$N2#]dIea1 23 9/L" Qo2912<5$N2#]OD,-.9S"2Y'5d"P$<5=,>Q@jV π 9Q 2#!%$,-,'5;P$12D;A. .9 π 2[ π B. .9L π 2[ Z π C. .9L π [ Z S π D. .9 π 2[ Z π Câu 49:_-2DWD`.%$,-,'5;a5Gb9SQ42#e2>2T,X"29S<58DWOD,- .9 ";1239 Q S scm π 2#!%$,-P$DWD`.O%>2;K A. .9 − S ππ t B. .9 + S ππ t C. .9 − LS ππ t D. .9 + LS ππ t #$ 001:_-212%$,-,'5;G<5$N2#]dIe12O1239" Q$23A,>P$12D; $ "$. 9" Q(+29D;D)12<5$N2#]dIe2Y'5d"P$2#B2>,-Q2#!%$,-P$ 12D;A. .92QB. .92[n QC. .92[nQD. .92vn 005:_-212%$,-,'5;0$5 2!,-D>Ie2Qs5h,T12,,E2# /SD;Z"Q(+32T$D)12<5$N2#]dIe2Y'5d"Q2#!%$,-P$12D; A. x c t cm π π = + w B. x t cm π π = − w C. L L x c t cm π π = − w D. L L x c t cm π π = + w Loại 2: CẮT - GHÉP LÒ XO ?>@`.u32 gH3,;q QQQ k k k = + + ?>@`.u gH3,;q QQQk k k= + + ?>M,N'5%;P$(@@M ('5%;D`.2>(4 CB l l l= + ∆ a l ∆ ,-8P$D`.:(4 mg l K ∆ = ('5%;2X5P$@M [oD`.2#Y2l,0 " l l l A= + ∆ − [o@Me"$ " l l A= − ('5%;A,>P$@M [oD`.2#Y2l,0 $. m l l l A= + ∆ + [o@Me"$ $. m l l A= + 4;210%B 4;Q_-212G3D5xy"9S/2#Y;D`.2!%$,-,'5`$a2J3f9LgmQ $Q ],-0P$D`./DjV π = Q IQ 42D`.O'5%;2A^ l cm= ;%$,-aI^,-L"Q2]'5%;Daj2/r j2P$D`.2#G%$,-Q@jV9" Q Q $V12"Ie12"z9S2!H%$,-a2J3I$^5K 4;Q_-2<58J5G3DE"9,E2#Y;;D.O'5%;2A^D 9"/,-0G9 SR "Q $Q ]'5%;P$D`.\(4Q@jV" Q IQ ou<58J5.53%a/(4"-2,>Z"#qI57O%$,-Q]5Gb/ 2J3%$,-P$<58J5Q@jV π = Q Q 22#!%$,-P$<58J5+32T$D)I5612w32+$,-2>(4/'5 %a.53Q 4;Q_-2<58J5G3DE"9S,E2#Y;D`.O'5%;2A^D 9L"Q $Q !"'5%;P$D`.:(4/I2#eD`.2#^G2#Y12" 9/D`.82^""-2,> "Q@jV9" Q],-0P$D.Q IQ ou<58.53%a/N2#]dIe"#qI567%$,-Q22#!%$ ,-P$<58J55+32T$D;D)2812/'5%a.53Q #$L 4;LQ"-2<58J5OG3DE"9G2#Y;D`.O,-0o9LR "Qs58J5%$,-,'5`$ aF9QS{2Y2l,0Q $Q ]5Gb;I^,-%$,-Q IQ ]'5%;D`.A2X5;A,>2#<52#!%$,-Q42D 9"Q Q ]123<58J5:2T,X"";'5%;D`.D;S"Q@jV9" Q 4;SQ"-212" 2#Y;D`.O,-0G9R "2!%$,-a5Gb 9QQR52$V12" Ie12" 2!D`.%$,-a5Gb 9QLQ $Q ]5Gb%$,-GW8$12;D`.;2]" /" Q IQ R5W2WD`., '5%;#q"W12" ;2!O%$,-a5GbIeI$^5K 4;Z ?>L@A2%B Q@AGu'$VDBBq ( ) F kx m x N ω = − = − ,X" [@;DAdV%$,-12 [@56a'(4 [42^,'5`$U2J3aD,-Q Q@A,;qD;DA,$12'N2#]D`.G6INI%> (O,-DaC9o.k.k,-I%>P$D`. k(DWD`.e"$2!DAGu;DB,;qD;"-2>(4D`.G6INI%>Q kaDWD`.2#Y2l,0$Ve"2#^"2l^Q -DaDA,;qOIX520 k F k l x= ∆ + a'5%a.53 k F k l x= ∆ − a'5%aD^Q @A,;qA,>DAGY ( ) $. "$.m K F k l A F= ∆ + = D)12:N2#]2jj2 @A,;qA2X5 kR5 " " K A l F k l A F< ∆ ⇒ = ∆ − = kR5 " A l F≥ ∆ ⇒ = D)12<5$N2#]D`.G6INI%> @A,|Vu,;qA,> "$. N F k A l= − ∆ D)12:N2#]2jd2 4;211%B Dạng : Lực đàn hồi cực đại và cực tiểu, chiều dài cực đại cực tiểu Câu 1:_-2DWD`.,-0o2#Y2l,0/,J52#^3,N/,J5%aW12Q-hP$D`.2> N2#]dIeD;∆DQ(DW%$,-,'5`$2Y2l,0aI^,-&&}∆DQ#<5 2#!%$,- $@AA,>2%B;,X"2#YO,-DaD; A. C9o&v∆D B. C9oQ∆D[& C. C9o∆D[& D. C9oQ&[∆D I@A,;qA2X52%B;,X"2#YD; A. C9o∆Dc& B. C9oQ∆D[& C. C9o∆D[& D. C9oQ&[∆D R5&~∆D2!DA,;qA2X52%B;,X"2#YD; A. C9 B. C9oQ∆D[& C. C9o∆D[& D. C9oQ&[∆D Câu 2:(DWD`.2#Y;3,N/G3DE12D;"9Q(DW%$,-,'5;2Y 2#!.9 S 2"Q@jV9" Q@A,;qA,>;A2X52%BD^ 2#YO2#ND; A. C _&M 9/SRwC " 9/SR B. C _&M 9/SRwC " 9R C. C _&M 9RwC " 9/SR D. C _&M 9RwC "p 9R #$S Câu 3_-2DWD`.2#Y2l,0%$,-aI^,-L"/5Gb/SQo3DE<58LQ @jVn 9/9" Q $2#NP$DA,;qA,>2%B;<58AQZ/SZRBQ/SZRQCQSZRQDQZSZR I2#NP$DA,;qA2X52%B;<58AQZ/SZRBQRQC./LLRQDQZSR Câu 4:(DWD`.2#Y2l,0/D`.OG3DEG6,GXQg`I,$:N2#]dIe2! ,EGu.53%a2Y2l,0"-2,>"#q28#$O%$,-Qg`I2AHS %$,-"j2Q(9 π 9" Q•3,-DaDA,;qA,>;DA,;qA2X5P$D`. G%$,-D;A. SB. LC. D. Câu 5_-2122#Y;D`.D;"O%h#$L"Q(9" 9 π I2DA,;qA,>;A2X5 DJDE2D;R;ZRQ('5%;2A^P$D`."Q('5%;A2X5;A,>P$D`.2#<5 2#!%$,-D; &QS";L"Q 4QL";"Q (QZ";L"Q ?QS";" Câu 6:(DWD`.2#Y2l,0/%$,-,'5`$a2#!.92"Q('5%;2A ^P$D`.D;l 0 9"/DjV9" Q('5%;rj2;Daj2P$D`.2#<52#!%$,- DJDE2D; A. /S";"Q B. ";Z"Q C. /S";L/S"Q D. ";L"Q Câu 7_-2DWD`.2#Y2l,0/,J52#^3,N/,J5%a2#Y"-212"9Qou12.53 %a N 2#] d Ie 2Y 2l ,0 #q I56 7Q 12 %$ ,- 2Y 2#! .9S L t π π + ÷ "Q(+32T$D;D)I5612/DjV9" Q@A%U,XGu122#aG %$,-O,-Da&Q/ZR 4QZ/LR (Q/R ?Q/R Câu 8:_-2j2,X"OG3DE"9S%$,-,'5;2#^,>2l_R9"a2J3f9S gmQo29j2,X"<5$N2#]dIe2Y'5%Q@jV Q = π :2T,X" t = /DAdV#$ 5VX,-P$j2,X"O,-DaD;A. RB. RC. RD. N LOẠI 3: NĂNG LƯỢNG CON LĂC: (DWD`. (DW, - F%9 mv F%9 mv F29 kx F29"9"Dc α ( F9F,[F29 kA m A ω = F9F,[F29 Q mgl c α − ()* [\(4F 2"$. 9/F %"$. 9F [\N2#]I^F,"9/F2"$.9F [O α rc α ≈ α Dạng : Tính cơ năng Bài 1_-2DWD`.%$,-,'5`$a5Gb;I^,-&Q>N2#];2!,-Ie2 Q Bài 2_-2DWD`.%$,-,'5`$a5Gb;I^,-&Q>N2#];2!,-j,62 Q #$Z Bài 3_-2DWD`.%$,-,'5`$a5Gb;I^,-&Q>N2#];2!,-jLDJ 2Q Bài 4_-2DWD`.%$,-,'5`$a5Gb;I^,-&Qt$5€G82T$;2! ,-Ie2Q Câu 5: _-2DWD`.OG9R "/<58OG3DE"9GQo,<5$N2#]ODV,-Z"12O1 23" Q $]I^,-%$,-A. "Q B. S" C. L" D. L" I],-2>N2#]ODV,-.9S"&Q/S{4Q{ (Q/S{ ?Q/S{ Câu 6#Y"-212rOG3DE"9G;"-2D`.7O,-0G9LR "Q+.D;2#B2+$ ,-O2l,0/32+$,-2>N2#]dIeP$12/'5%aD^Q12,EG]2] %$,-2A%aI^,-S"Q-• , ;• , P$12GO<5$N2#]O2+$,-. 9";. 9c "D; AQ• , 9/{;• , 9c/{ BQ• , 9/{;• , 9/{CQ• , 9/{;• , 9/{DQ• , 9/ZL{; • , 9/ZL{ Câu 7Q_-2DWD`.O"9%$,-,'5;2Y,0Q('5%;2A^P$D`.D; D 9"Q@jV9" QoD`.O'5%;"2!123IeG6;D),ODA,;qO,-Da RQRDE%$,-P$12D;AQ/S{BQ/{CQ/{DQ/{ Câu 8_-212OG3DE"9%$,-,'5;2#^2#B.a2J3f9gm/DjV2>2T ,X"212OD,-.9cS"/$5,O/S2!12O2&Q"y4QS"y(Q/"y ?QS"y Câu 9_-2DWD`.%$,-,'5;QR52,-0D`.D^DJ;8"G3DE,$DJ 2!P$12‚AQG6,ƒ BQ2I3DJ CQ2$DJ DQ8"$DJ Câu 10:_-2DWD`.e"$/2>N2#]dIe/j12"-2123O,-Da" %+ 2Y2#BD`./2!$5/L2DW,>2A,>DJ,J52^/D),O12N2#]dIe A. /S"Q B. L"Q C. /S"Q D. S"Q Câu 11(DWD`.%$,-2Y$a2#!.9&ω2[ϕQ(0$5€G8 2T$Ie$5;Ieπ L2!,-P$12Ie2P$D`.Q(DW%$,-,'5 ;a2J3OIe &Q#$%Q v 4Q#$%Q v (QL#$%Q v ?Q#$%Q v Câu 12:_-212%$,-,'5;a2#! /S 2[ x c π = "Q1232>N2#]";2 jDJ,-D;A. /S" B. " C. /S" D. S" Q Câu 13:12%$,-,'5;a123A,> "$. /O23,-O„/G<5$vÞ trÝ li ,- x 1 vËt cã123 tho¶"h A. 9 "$. [ „ . QB. 9 "$. c „ . QC. 9 "$. c„ . QD. 9 "$. [„ . Q Câu 14:#%$,-,'5`$P$"-2DWD`./58"G3DEP$12…2!3DJ%$ ,-P$DW2#"-2,N2T$A. 2 S DJQB. 2 S DJQC. 8" S DJQ D. 8" S DJQ Câu 15_-212%$,-,'5;aI^,-L"QoOOD,-"2!123D;" QJ3%$,- D; &Qgm 4Qgm (QL/Zgm ?Q/gm #$ Câu 16_-212OG3DE2#Y;D`.D;"O%h#$"Q#<52#!12%$,-2!'5 %;P$D`.I2^2†S",S"Q@jV9" Q(P$12D;&QS{Q4Q/S{Q(Q/S{Q ?QS{Q Câu 17: _-212%$,-,'5`$2Y2T$O2#! x A t ω ϕ = + 2!,-;2 ‡%$,-,'5`$a2J3O&Q ˆ ω ω = 4Q ˆ ω ω = (Q ˆ ω ω = ?Q ˆ L ω ω = Câu 18:(DWD`.%$,-,'5`$2Y2l,0ODE%$,-•9Q c {DA ,;qA,>P$D`.C "$. 9LRQ@A,;qP$D`.G12:N2#]dIeD;C9RQ4^,-%$ ,-‚D; A. "Q B. L"Q C. S"Q D. "Q Câu 19:_-2DWD`.,$%$,-,'5`$a2#!.9&ω2Qt$5,dVD;,q2NIX5%i ,-F , ;2F 2 P$DW2Y2T$QRT2$2jV0$5/S,-D>Ie2 2!2J3%$,-DW‚D; &π#$% 4Qπ#$% (Q π #$% ?QLπ#$% Câu 20:#<52#!%$,-,'5`$P$DWD`.2! A. ;,-I2^25J;U2J3/2J3,Oj,62J3%$,-Q B. $5"‰DJ12,ƒ'5/O2T,X"2>,Oj$DJ,-Q C. G,-2/8";ED>/G,-8"2!2Q D. P$12Ie,-G12,ƒ'55VX,-Q Câu 21: _-2DWD`.%$,-,'5;a2#! SL x t cm π π = − Q42G3DEP$ <58J5D;QRDE%$,-P$12D; A. /L J B. /L mJ C. /L mJ D. /L J Câu 22:_-212%$,-,'5;/0$5"-2G82T$/S2!,-D>Ie2QJ3 %$,-P$12D;A./gmB./SgmC.SgmD.gm Loại 3: NHỮNG BÀI TOÁN LIÊN QUAN ĐÊN SỰ BIẾN THIÊN CHIU KỲ GIÁ TRỊ NHỎ. Dạng 1: biến thiên chu kỳ con lắc đơn theo độ cao: $23:"2,j2"2IX M g G R = $23:,-$ M g G R h = + #,O _D;G3DEP$2#,j2 e3j%Š ‹IG]2#,j2 tAI2^5Gb:,-$ T T T h T T R − ∆ = = #$ F F 9 o& F 2 F Œ F 2 Dạng 2: Biến thiên chu ky ở độ sâu: o3DEP$2#,j2:,-d5;2d" ˆ R h M M R − = ÷ $23:,-d5 ( ) ( ) Q ˆ ˆ M R h M g G G R R h − = = − (5GVI2^2Y,-d5 ˆ ˆ T T T h T T R − ∆ = = Dạng 3: Biến thiên chu kỳ theo nhiệt độ: ('5%;P$%dV2#Y2YH2,-2 ( ) l l t α = + #,O l '5%;%dV: ( α H3:%;o c l '5%;%dV:2 ( (620J,)g'2"X5 42^5Gb T T T t T T α − ∆ = = ∆ Dạng 4: con lắc chạy sai trong một ngày đêm. 426202]5GbP$DW,qq2#2#TE>V,) ;>V$ 4@12•3 %U620J,)5J R5 ~5V#$,qq>V$ R5 }5V#$,qq>V1" 4]3%$,-";DW,qq>V$2AH,E2#;V,^" 29ZL t N T = 4L]2T$,qq>V$ ˆ T t NT t T = = 4ST$>V$ ( ) ˆ T t t t t T ∆ = − = − (DW,%UD;"DW,qq2T$,qq>V$2#;V,^" ZLk T T t T − = 2#,O 5GbDW>V,)w 5GbDW>V$Q Loại 4: CON LẮC ĐƠN CHỊU TÁC DỤNG CỦA LỰC LẠ R;2#+DA;DA2!DW,E,22#"62#G$5 [(D,>22#,H2#TN52%BP$DA,H2# F qE= r r [(DW,22#H5VX,-O$23.Y/2$"$V•52Y"DB<52] f ma= r r 22#+DAIX5Gz9[f MY"DWD);VDWI!2Ta5Gb ˆ ˆ l T g π = z$23IX5G^ a,E., ˆg g a= + r r r #$ ()* ( ) ˆ ˆ ˆ F P g g a g F P g g a g F P g g a ↑↑ ⇒ = + > ↑↓ ⇒ = − < ⊥ ⇒ = + r r r r r r Loại 5: VẬN TỐC VÀ SỨC CĂNG DÂY d23 c v gl c α α = 123A,> "$. V gl c α = − :(4 @A%dV T mg α α = − \(4DAA,> $. Tm mg α = − #TE 9c c α α α < 123 v gl α α = − @A%dV V. TỔNG HỢP DAOĐỘNG 1.ƒE$%$,-,'5;UU2J3. 9& ω2[ϕ ;. 9& ω2[ϕ ,E "-2%$,-,'5;UU2J3.9&ω2[ϕQ #,O A A A A A c ϕ ϕ = + + − 2$ A A A c A c ϕ ϕ ϕ ϕ ϕ + = + aϕ ŽϕŽϕ 5ϕ Žϕ kR5∆ϕ9Gn. /. U$⇒& _$. 9& [& • kR5∆ϕ9G[n. /. E$⇒& _ 9|& c& | ⇒|& c& |Ž&Ž& [& 2.oI2"-2%$,-2;J. 9& ω2[ϕ ;%$,-2ƒE.9&ω2[ϕ2!%$,- 2;J`D>D;. 9& ω2[ϕ Q #,O A A A AAc ϕ ϕ = + − − 2$ A A Ac Ac ϕ ϕ ϕ ϕ ϕ − = − aϕ ŽϕŽϕ 5ϕ Žϕ 3.R5"-2122$"$,q2T'5%$,-,'5;UU2J3. 9& ω2[ϕ w . 9& ω2[ϕ •2!%$,-2ƒE‡D;%$,-,'5;UU2J3 .9&ω2[ϕQ (5D^2#B•.;2#B•V⊥•.Q $,E QQQ x A Ac A c A c ϕ ϕ ϕ = = + + QQQ y A A A A ϕ ϕ ϕ = = + + x y A A A⇒ = + ; 2$ y x A A ϕ = aϕ∈‘ϕ _ wϕ _$. ’ Dạng 11: Tổng hợp hai daođộng cùng phương cùng tần số #$ [...]... ma sỏt à = 5.103 S chu k dao ng cho n lỳc vt dng li l: A.50 B 5 C 20 D 2 Cõu 4: Mt h dao ng diu hũa vi tn s dao ng riờng 4 Hz Tỏc dng vo h dao ng ú mt ngoi lc cú biu thc f = F0cos( 8t + ) thỡ: A h s dao ng cng bc vi tn s dao ng l 8 Hz 3 B h s dao ng vi tn s cc i vỡ khi ú xy ra hin tng cng hng C h s ngng dao ng vỡ do hiu tn s ca ngoi lc cng bc v tn s dao ng riờng bng 0 D h s dao ng vi biờn gim dn rt... ban u v biờn ca dao ng tng hp ca hai dao ng trờn l:A ; 2.B ; 3 6 12 3 2 2 C ; 2 2 D ; 2 4 2 Cõu 12: Chn cõu ỳng Khi núi v s tng hp dao ng A Biờn dao ng tng hp cú giỏ tr cc tiu, khi lch pha ca hai dao ng thnh phn bng mt s l ca 2 B Biờn dao ng tng hp cú giỏ tr cc tiu, khi lch pha ca hai dao ng thnh phn bng mt s chn ca C Biờn dao ng tng hp cú giỏ tr cc i, khi lch pha ca hai dao ng thnh phn... 0973827990 A.Biờn dao ng tng hp l 200mm B.Pha ban u ca dao ng tng hp l /6 C.phng trỡnh dao ng tng hp l x=220sin( t-/6)mm D.tn s gúc ca dao ng tng hp l =2rad/s 4.Cht im m = 50g tham gia ng thi hai dao ng iu ho cựng phng cựng biờn 10 cm v cựng tn s gúc 10 rad/s Nng lng ca dao ng tng hp bng 25 mJ lch pha ca hai dao ng thnh phn bng : A 0 B /3 C./2 D 2/3 Cõu 18: Mt vt thc hin ng thi ba dao ng iu ho cựng... biu thc dao ng iu ho? A 3sint + 2cost B sint + cos2t C 3tsin2t D sint - sin2t Cõu 36: Hai dao ng iu hũa cựng phng, cựng tn s Vi iu kin no thỡ li (khỏc khụng) ca hai dao ng cú cựng ln v trỏi du mi thi im? A Hai dao ng cựng pha, cựng biờn B Hai dao ng cựng pha, khỏc biờn C Hai dao ng ngc pha, cựng biờn D Hai dao ng ngc pha, khỏc biờn Cõu 37: Mt con lc lũ xo treo thng ng c kớch thớch cho dao ng... hai ngun): < k < 2 2 * im dao ng cc tiu (khụng dao ng): d1 d2 = (2k+1) 2 Hai ngun dao ng ngc pha:( = 1 2 = ) * im dao ng cc i: d1 d2 = (2k+1) (kZ) 2 l 1 2 S ng hoc s im (khụng tớnh hai ngun): < k < l 1 2 * im dao ng cc tiu (khụng dao ng): d1 d2 = k (kZ) l S ng hoc s im (khụng tớnh hai ngun): < k < l Chỳ ý: Vi bi toỏn tỡm s ng dao ng cc i v khụng dao ng gia hai im M, N cỏch hai... lc tỏc dng cn tr dao ng Cõu 5 Mt con lc dao ng tt dn Sau mt chu kỡ biờn gim 10 0 0 Phn nng lng m con lc ó mt i trong mt chu k: A 90 0 0 B 8,1 0 0 C.81 0 0 D.19 0 0 Cõu 6: Mt cht im dao ng tt dn cú tc cc i gim i 5% sau mi chu k Phn nng lng ca cht im b gim i trong mt dao ng l: A 5% B 9,7% C 9,8% D 9,5% Cõu 7 Phỏt biu no sau õy l sai khi núi v dao ng tt dn: A tn s ca dao ng cng ln thỡ dao ng tt dn cng... chn ca D Biờn dao ng tng hp cú giỏ tr cc i, khi lch pha ca hai dao ng thnh phn bng mt s l ca Cõu 03: Hai vt dao ng iu ho cựng tn s v biờn dc theo hai ung thng song song cnh nhau Hai vt i qua cnh nhau khi chuyn ng ngc chiu nhau, v u ti v trớ cú li bng na biờn lch pha ca hai dao ng l: 5 4 1 2 A 6 B 3 C 6 D 3 Cõu 13: Cho hai dao ng iu hũa cựng phng cựng chu kỡ T=2s Dao ng th nht ti thi... trỡnh dao ng tng 2 hp cú dng A x = 2cos( t 3 6 ) cm B x = 2cos( t + 2 2 ) cm C x = 2cos( t + 3 ) cm D x = 2cos( t ) cm t Cõu 19: Hai dao ng iu ho cựng phng cú phng trỡnh dao ng l x 1 = 4cos( 10 - 3 ) cm v x2=4cos(10 Phng trỡnh ca dao ng tng hp l: t+ 6 ) cm t t A x = 4 B x = 8cos( 10 - 12 ) C x = 8cos( 2 cos( 10 - 12 ) 10- 6 ) t t D x = 4 2 cos(( 10 - 6 ) Cõu 20: Dao ng tng hp ca hai dao. .. n C Giam 9 lõ n D Tng 3 lõ n Cõu 8: Mt vt dao ng iu hũa, trong 1 phỳt thc hin c 30 dao ng ton phn Quóng ng m vt di chuyn trong 8s l 64cm Biờn dao ng ca vt l: A 3cm B 2cm C 4cm D 5cm Cõu 9: Mt vt dao ng iu hũa vi chu kỡ T = 3,14s Xỏc nh pha dao ng ca vt khi nú qua v trớ x = 2cm vi vn tc v = 0,04m/s: A 0 B rad C rad D rad 4 6 3 Cõu 10: Chn phỏt biu sai v dao ng iu hũa ? A.Tng ng nng v th nng khụng... lõ n C Giam 9 lõ n D Tng 3 lõ n Cõu 20: Mt vt dao ng iu hũa, trong 1 phỳt thc hin c 30 dao ng ton phn Quóng ng m vt di chuyn trong 8s l 64cm Biờn dao ng ca vt l: A 3cm B 2cm C 4cm D 5cm Cõu 21: Mt vt dao ng iu hũa vi chu kỡ T = 3,14s Xỏc nh pha dao ng ca vt khi nú qua v trớ x = 2cm vi vn tc v = 0,04m/s: A 0 B rad C rad D rad 4 6 3 Cõu 22: Con l c lo xo dao ụ ng theo phng th ng ng, trong hai lõ n . ZQ$I$,J5;I^,-P$%$,-2ƒEP$$%$,-2#^D;A. S π w "QB. π w cm QC. w L cm π Q VI. DAO ĐỘNG TẮT DẦN – DAO ĐỘNG CƯỠNG BỨC - CỘNG HƯỞNG #$ T ∆Α . 2 • . A⇒ = + ; 2$ y x A A ϕ = aϕ∈‘ϕ _ wϕ _$. ’ Dạng 11: Tổng hợp hai dao động cùng phương cùng tần số #$