1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Ebook Kết cấu bê tông cốt thép - Phần Cấu kiện cơ bản: Phần 2

63 130 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 63
Dung lượng 3,98 MB

Nội dung

Phần 2 cuốn sách Kết cấu bê tông cốt thép - Phần Cấu kiện cơ bản cung cấp cho bạn đọc các kiến thức về sàn phẳng, cấu kiện chịu nén, cấu kiện chịu kéo, cấu kiện chịu xoắn, tính toán cấu kiện BTCT theo trạng thái giới hạn thứ hai,... Mời các bạn cùng tham khảo.

Chỉång SN PHÀĨNG GIỚI THIỆU CHUNG: Sn BTCT âỉåüc sỉí dủng khạ räüng ri xáy dỉûng v dỉåïi nhiãưu dảng khạc nhau: sn nh dán dủng, cäng nghiãûp, cạc dảng mại bàòng, mại nghiãng, bn cáúu thang, cạc dảng mọng, âạy bãø, tỉåìng chàõn Sn BTCT cọ ỉu âiãøm l kh nàng chëu lỉûc låïn, âa nàng, thiãút kãú v thi cäng âån gin 1.1 Phân loại: a Theo PP thi cơng: Cọ sn ton khäúi, sn làõp ghẹp v sn nỉía làõp ghẹp b Theo sơ đồ kết cấu: Cọ sn sỉåìn v sn khäng sỉåìn (sn náúm) Dảng sn sỉåìn âỉåüc sỉí dủng phäø biãún, cn âỉåüc phán thnh nhiãưu loải (kãút håüp våïi PP thi cäng v cháút lm viãûc ca bn sn): - Sn sỉåìn ton khäúi cọ bn loải dáưm (bn sn lm viãûc phỉång) - Sn sỉåìn ton khäúi cọ bn kã cảnh (bn sn lm viãûc phỉång) - Sn sỉåìn ä cåì - Sn sỉåìn pa nen làõp gheïp 1.2 Phân biệt loại dầm kê cạnh: Tênh cháút lm viãûc ca bn ch úu phủ thüc co liãn kãút v kêch thỉåïc cạc cảnh ca bn Xẹt mäüt säú dảng cå bn sau: - Khi bn chè cọ liãn kãút åí cảnh hồûc cảnh âäúi diãûn, ti trng tạc dủng lãn bn chè âỉåüc truưn theo phỉång cọ liãn kãút, hay bn chè lm viãûc theo phỉång Ta gi l bn loải dáưm q q q - Khi bn cọ liãn kãút åí c cảnh (hồûc åí 2, cảnh khäng chè âäøi diãûn), ti trng âỉåüc truưn vo liãn kãút theo c phỉång Ta gi loải ny l bn kã cảnh (lm viãûc phỉång) l q2 Våïi bn lm viãûc phỉång ta dãù dng xạc âënh âỉåüc näüi lỉûc bn (nhỉ näüi lỉûc dáưm), nhỉng våïi bn kã cảnh thỗ khọng õồn q1 giaớn: - Xeùt baớn kó tổỷ åí cảnh chëu ti trng phán bäú âãưu; l1 Gi ti trng truưn theo phỉång cảnh bẹ l1 l q1, ti trng truưn theo phỉång cảnh låïn l2 l q2 Ta cọ: q = q1+ q2 (5 - 1) Càõt di bn cọ bãư räüng bàòng âån vë tải chênh giỉỵa bn theo phỉång Âäü vng taỷi õióứm giổợa cuớa mọựi daới: KHOA XY DặNG DN DUÛNG & CÄNG NGHIÃÛP l l l2 q2 q1 l1 l2 ; 384 E.J q l 24 f2 = ; + Theo phæång l2: 384 E.J Âiãøm giỉỵa ca di bn âang xẹt trung nhau, tæïc f1 = f2 ⇒ q1 l14 = q l 24 + Theo phỉång l1: Tỉì (5 - 1) vaì (5 - 2): q1 = q1 = f1 = l 24 l14 + l 24 l 24 l14 q v q2 = Chỉång q1 l14 q2 (5 - 2) l14 l14 + l 24 q; l2 q1 (5 - 3) l1 q2 ; Khi l2 > l1 thỗ q1 > q2 Nóỳu tyớ sọỳ (5 - 4) l2 q >3 thỗ >81, váûy pháưn låïn ti trng tạc dủng trãn bn âỉåüc truưn l1 q2 theo phỉång cảnh ngàõn l1, v cọ thãø b qua pháưn ti truưn theo phỉång cảnh di l2 (tỉïc xem bn loải dáưm) 1.3 Khái niệm khớp dẻo-Sự phân bố lại nội lực xuất khớp dẻo: a Khái niệm khớp dẻo: Vuìng BT cọ Xẹt dáưm chëu ún cho âãún bë phạ hoải Gi sỉí dáưm âỉåüc cáúu tảo thẹp biãún dảng cho bë phạ hoải cọ: - ỈÏng sút cäút thẹp chëu kẹo âảt giåïi hản chy; - ỈÏng sút BT vng nẹn âảt giåïi hản chëu nẹn v cọ biãún dảng cäút thẹp chëu kẹo låïn; âảt giåïi hản chy Lục ny tải TD âang xẹt cọ biãún dảng tàng nhỉng näüi lỉûc khäng tàng v cọ giạ trë l giåïi hản chëu ún Mgh Ta nọi ràòng tải TD â xút hióỷn khồùp deớo (khồùp deớo khaùc vồùi khồùp bỗnh thỉåìng l tải khåïp cọ mä men khäng âäøi gi l mä men khåïp Mkd = Mgh) Våïi kãút cáúu ténh âënh, sỉû xút hiãûn khåïp âäưng thåìi våïi kãút cáúu bë phạ hoải Våïi kãút cáúu siãu ténh xút hiãûn khåïp lm gim báûc siãu ténh ca hãû Sỉû phạ hoải ca kãút cáúu säú khåïp deío âuí âãø hãû bë biãún hỗnh - Traỷng thaùi xuỏỳt hióỷn khồùp deớo cuọỳi cng trỉåïc kãút cáúu bë phạ hoải gi l trảng thại cán bàòng giåïi hản - Phỉång phạp theo sồ õọử deớo (xeùt õóỳn sổỷ hỗnh thaỡnh caùc khåïp cho âãún hãû sàõp bë phạ hoải) gi l theo trảng thại cán bàòng giåïi hản b Sự phân bố lại nội lực: Khi xuáút hiãûn khåïp do, dáưm cọ sỉû phán bäú lải näüi lỉûc Xẹt dáưm chëu ti cọ så âäư sau: MA MB P - Nãúu theo så âäư ân häưi, t säú , l khäng âäøi våïi dảng taíi troüng M nh M nh Khi P tàng âãún P1 gi sỉí tải gäúi A xút hiãûn khåïp trổồùc Luùc naỡy nóỳu P tng thỗ mọ men taỷi gäúi A khäng tàng, cn tải cạc TD váùn tàng MA Khi P tàng âãún P2 gi sỉí tải gäúi B xuỏỳt hióỷn khồùp deớo Nóỳu P tng thỗ mọ men tải cạc gäúi A v B khäng tàng, cn tải cạc TD váùn tàng a b MB Mnh Khi P tng õóỳn P3 giổợa nhởp hỗnh thaỡnh khồùp deớo, kãút cáúu bë phạ hoải: âáy l TT cán bàòng giåïi hản KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP Chổồng Nhổ vỏỷy hỗnh thaỡnh khồùp deớo, kãút cáúu cọ sỉû phán bäú lải näüi lỉûc, âáy l úu täú cọ låüi trạnh sỉû phạ hoải cuỷc bọỹ MkdA P MkdB Khi taỷi caùc gọỳi hỗnh thnh khåïp do, tỉì så âäư trãn cọ thãø thay ngm bàòng cạc liãn kãút khåïp v mäüt mä men khåïp a b Gi M0 l mä men ca dáưm âån gin tỉång ỉïng våïi P3, ta cọ: MkdA MkdB b a M0 = Mkd-nh + MkdA + MkdB l l Kãút håüp våïi quan hãû M0 = M(P3) xạc âënh âỉåüc ti trng åí TT cán Mkdnh bàòng giåïi hản c Điều kiện để tính theo sơ do: óứ hỗnh thaỡnh khồùp deớo, vỏỷt lióỷu vaỡ hãû phi cọ cạc cháút sau: - Cäút thẹp cọ thãưm chy r rãût (dng thẹp do, dáy thẹp kẹo ngüi, khäng dng thẹp dáûp ngüi ) - Trạnh sỉû phạ hoải BT vng nẹn bë hng ẹp våỵ hồûc càõt âỉït (chiãưu cao vng nẹn khäng quaï låïn α ≤ αd; BT maïc ≤ 300 αd= 0.31; BT maïc ≥ 400 αd= 0.295; ⇒ láúy αd= 0.30) - Âãø hản chãú bãư räüng khe nỉït tải TD cọ khåïp âáưu tiãn: Mkd ≥ 0,7Mâh SÀN SƯỜN TỒN KHỐI CĨ BẢN LOẠI DẦM: 2.1 Sơ đồ kết cấu: Sn cọ thãø cọ dáưm chênh âàût theo phỉång dc hồûc theo phỉång ngang (tu thüc sổỷ bọỳ trờ chung cuớa cọng trỗnh, yóu cỏửu thọng giọ, chiãúu sạng ) Cạc bäü pháûn chênh ca sn: 3l1 1 Bn, Cäüt, 2 Dáưm phủ, Tỉåìng 3l1 Dáưm chênh, Sn gäưm bn sn v hãû dáưm (sỉåìn) âục liãưn 3l1 khäúi: bn kã lãn dáưm phủ, dáưm phủ gäúi lãn l2 dáưm chênh, dáưm chênh gäúi lãn cäüt v tỉåìng, l1 l1 Khong cạch dáưm phủ l1 = (1-4)m, thỉåìng l1 l2 l1 = (1,7-2,8)m l1 l1 l1 3l1 3l1 l2 l2 l2 Khong cạch dáưm chênh l2= (4-10)m, thỉåìng l2 = (5-8)m 1 ⎞ ⎛ Chiãöu dy bn hb = ⎜ − ⎟ l1 (trong mi trỉåìng håüp hb ≥ 6cm) ⎝ 35 25 ⎠ ≥ 5cm våïi sn mại; l l l l 1 1 ≥ 6cm våïi saìn nhaì dán dủng; ≥ 7cm våïi sn nh CN; 1⎞ ⎛ ⎛ 1⎞ Chiãưu cao dáưm phủ hdp = ⎜ − ⎟ nhëp; Chiãöu cao dáöm chênh hdc = ⎜ − ⎟ nhëp; ⎝ 20 12 ⎠ ⎝ 12 ⎠ Bãö räüng dáöm bd = (0,3 - 0,5)hd; Nãúu chu vi sn âỉåüc kã lãn tỉåìng gảch, âoản kã: ≥ (12cm v hb) våïi bn; ≥ 22cm våïi dáưm phủ; ≥ 34cm våïi dáưm chênh; 2.2 Tính nội lực sàn: KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP Chỉång a Tính theo sơ đồ dẻo: - Så âäư tênh: Càõt di bn räüng = âån vë (1m) theo phỉång cảnh ngàõn, b qua nh hỉåíng qua lải giỉỵa cạc di; Xem cạc di bn lm viãûc âäüc láûp dáưm liãn tủc tỉûa lãn dáưm phủ v tỉåìng - Ti trng: Tènh ti g (trng lỉåüng bn thán bn BTCT v cạc låïp cáúu tảo ) Hoảt ti p (ti trng sỉí dủng trãn sn) phán bäú âãưu trãn màût sn âỉåüc qui vãư phán bäú âãưu trãn di bn - Nhëp toạn: bt Nhëp giỉỵa láúy bàòng khong cạch giỉỵa mẹp dáưm phủ l = l1 - bdp; Nhëp biãn láúy bàòng khong cạch tỉì mẹp dáưm phủ âãún cạch lb bdp bt h + b ; mẹp tỉåìng nỉía láưn chiãưu dy bn lb = l1 l1 2 - Näüi lỉûc: Theo så âäư ta cọ: q.l 2b Nhëp biãn v gäúi thỉï 2: M = ± ; (5 - 5) 11 lb q.l Nhëp giỉỵa v gäúi giỉỵa: M = ± ; (5 - 6) q.l 2b 16 11 Trong âoï q = g + p; l l1 l l1 g l1 p l l l q.l 16 b Tính dầm phụ theo sơ đồ dẻo: - Så âäư tênh: dáưm liãn tủc gäúi lãn dáưm chênh v tỉåìng a - Ti trng: phán bäú âãưu gäưm Tènh ti: gd = g.l1 + g0 (bn truưn vo v trng lỉåüng bn thán pháưn sỉåìn dáưm phủ) lb bdc l l bdc Hoảt ti pd = p.l1 l2 l2 l2 l2 - Nhëp toaïn: gd pd Nhëp giỉỵa láúy bàòng khong cạch giỉỵa mẹp dáưm chênh l = l2 - bdc; Nhëp biãn láúy bàòng khong cạch tỉì mẹp dáưm chênh âãún tám b b a lb l l l gäúi tỉåìng lb = l2 - dc - t + ; 2 - Näüi lỉûc: Cọ thãø dng PP täø håüp ti trng (våïi cạc dáưm báút k) hồûc dng cạc cäng thỉïc v bng láûp sàõn (dáưm âãưu nhëp chëu ti cạc nhëp giäúng nhau) âãø v BÂB mä men, lỉûc càõt Tung âäü nhạnh dỉång BÂB mä men: M = β1.q.l2; (5 - 7) Tung âäü nhaïnh ám BÂB mä men: M = β2.q.l ; (5 - 8) Cạc giạ trë β1, β2 tra bng (5 - 9) Lỉûc càõt xạc âënh sau: Tải gäúi A QA = 0,4.q.l; tr Tải mẹp trại gäúi B Q B = 0,6.q.l; (5 - 10) Tải mẹp phi gäúi B v cạc gäúi giỉỵa ph tr Q ph B = Q C = Q C = =0,5.q.l; (5 - 11) Trong âọ q = g + p; l l nhëp toạn c Tính dầm theo sơ đồ đàn hồi: bt KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP l1 l1 bc l1 l1 l1 l1 l1 Chỉång - Så âäư tênh: dáưm liãn tủc gäúi tỉûa l cäüt v tỉåìng (l kãút cáúu chëu lỉûc chênh, âãø hản chãú biãún dảng ca hãû, theo så âäư ân häưi) - Ti trng: gäưm ti trng dáưm phủ truưn vo l táûp trung, v trng lỉåüng bn thán pháưn sỉåìn dáưm chênh cng âỉåüc qui vãư thnh táûp trung Tènh ti: G = gd.l2 + G0 Hoảt ti P = pd.l2 - Nhëp toạn: láúy bàòng khong cạch trng tám cạc gäúi l; - Näüi lỉûc: Näüi lỉûc dáưm chênh âỉåüc xạc âënh theo trỗnh tổỷ sau: + Xaùc õởnh vaỡ veợ B nọỹi lỉûc ténh ti G âỉåüc:MG, QG v cạc trỉåìng håüp báút låüi ca hoảt ti: MP1, QP1, MP2, QP2, + Cäüng BÂ näüi lỉûc ténh ti MG, QG våïi tỉìng trỉåìng håüp hoảt ti: MPi, QPi âỉåüc: Mi, Qi + Tải mäùi TD chn cạc BÂ täøng cäüng mäüt giạ trë dỉång låïn nháút v mäüt giạ trë ám cọ trë tuût âäúi låïn nháút âãø v BÂB näüi lỉûc (cọ thãø xạc âënh BÂB näüi lỉûc bàòng cạch v cạc BÂ täøng cäüng lãn cng mọỹt truỷc vaỡ cuỡng tố lóỷ, hỗnh bao seợ laỡ cạc âoản ngoi cng) Cáưn chụ âãún âäúi xỉïng v cọ nhỉỵng nháûn xẹt vãư nh hỉåíng ca cạc trỉåìng håüp hoảt ti âãø b qua cạc trỉåìng håüp khäng cáưn thiãút, gim khäúi lỉåüng toạn Våïi dáưm âãưu nhëp chëu ti cạc nhëp giäúng cọ thãø dng cạc cäng thỉïc v bng láûp sàõn âãø v BÂB näüi lỉûc: Tung âäü nhạnh dỉång BÂB mä men: M = (α0.G + α1.P).l ; (5 - 12) Tung âäü nhaïnh ám BÂB mä men: M = (α0.G - α2.P).l; (5 - 13) Tung âäü nhạnh dỉång BÂB læûc càõt: Q = β0.G + β1.P ; (5 - 14) Tung âäü nhạnh ám BÂB lỉûc càõt: Q = β0.G - β2.P; (5 - 15) Caïc giaï trë α0, α1, α2, β0, β1, β2 tra baíng 2.3 Tính cốt thép: a Tính cốt thép bản: Tênh cáúu kiãûn chëu ún TD chỉỵ nháût âàût cäút âån cọ: b = 1m; h = hb; TD giỉỵa nhëp biãn v nhëp giỉỵa våïi mä men dỉång låïn nháút TD gäúi thỉï v gäúi giỉỵa våïi mä men ám Âäúi våïi cạc ä bn m c cảnh âãưu âục liãưn khäúi våïi sỉåìn âỉåüc phẹp gim 20% lỉåüng thẹp toạn (do xẹt nh hỉåíng ca hiãûu ỉïng voỡm baớn) Vỗ baớn khọng cỏỳu taỷo cọỳt ngang nãn phaíi kiãøm tra khaí nàng chëu càõt cuía BT vng nẹn: Q ≤ 0,8.Rk.b.h0; b Tính cốt thép dầm: Tênh cáúu kiãûn chëu ún TD chỉỵ T, cạnh l pháưn bn åí phêa trãn (hồûc phêa dỉåïi nãúu sỉåìn näøi), bãư räüng cạnh láúy theo qui âënh TD chỉỵ T TD giỉỵa nhëp våïi mä men dỉång, cạnh nàòm vng nẹn: TD chỉỵ T TD åí gäúi våïi mä men ám, cạnh nàòm vng kẹo: TD chỉỵ nháût Cäút thẹp bäú trê tải gäúi âỉåüc våïi mä men mẹp gäúi: Mmg = Mg - 0,5.bc.i (bc l bãư räüng cäüt, i l âäü däúc ca BÂB mä men) Tênh näüi lỉûc dáưm phủ theo så âäư nãn cäút doüc ÂKch laì: α ≤ αd = 0.3; Hay âiãưu kiãûn âãø âàût cäút M M âån l h0 ≥ = ; R n b A d R n b KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP P Chæång Tênh cäút ngang chëu càõt: Âäúi våïi dáưm chênh thỉåìng lỉûc càõt låïn nãn phi bäú trê cäút xiãn Tênh cäút treo: Taûi vë trê dáưm phủ gäúi lãn dáưm chênh cáưn bäú trê cäút treo dáưm chênh âãø trạnh phạ hoải củc bäü ti trng táûp trung Cäút treo cọ thãø l cäút âai âàût dy hån hồûc l cạc thẹp ún chỉỵ V P Diãûn têch cäút treo cáưn thiãút: Ftr = ; Ra h1 h1 bdp h1 h1 bdp h1 V âỉåüc bäú trê bãn dáưm phủ trãn âoản: s = 2.h1 + bdp; 0.15l Bố trí cốt thép sàn: c 0.25l 0.25l 0.25l 0.25l Bố trí cốt thép bản: Cäút thẹp bn täút nháút l dng lỉåïi hn: - Khi âỉåìng kênh khäng låïn cọ thãø dng cạc lỉåïi liãn tủc, åí nhëp biãn v gäúi thỉï cáưn nhiãưu thẹp hån cọ thãø bäø sung cạc lỉåïi phủ hồûc büc thãm cạc råìi - Khi âỉåìng kênh låïn (d ≥ 6) nãn dng cạc lỉåïi thẹp riãng, åí gäúi âàût phêa trãn, åí nhëp âàût phêa dỉåïi Nãúu dng lỉåïi büc tỉì cạc råìi: - Khi hb ≤ 8cm cọ thãø dng cạc thẹp âàût åí mẹp âỉåïi kẹo di qua cạc nhëp (tải nhëp biãn lỉåüng thẹp låïn hån cọ thãø dng lỉåïi thẹp riãng), tải gäúi âàût cäút m - Khi hb > 8cm nãn ún båït thẹp (khong 1/3 âãún 2/3 lỉåüng thẹp, cn lải khäng êt hån 3thanh/1m di) åí nhëp lãn p/g ≤ 3: α = 1/4 gäúi p/g > 3: α = 1/3 l1 0.15l l1 1/6.l KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP 0.25l 0.25l l1 l1 1/4.l 1/4.l l 1/8.l 1/4.l 1/4.l l α.l 1/6.l 1/6.l Cäút thẹp dáưm täút nháút l dng khung hn: + Giỉỵa nhëp dng cạc khung phàóng âỉåüc kẹo di âãún mẹp gäúi + Trãn gäúi dáưm phủ cọ thãø âàût cạc lỉåïi thẹp âãø chëu mä men ám (do vỉåïng khung thẹp chëu lỉûc åí nhëp ca dáưm chênh), cn våïi dáưm chênh âãø chëu mä men ám cọ thãø bäú trê cạc khung hn (xun qua cạc khung thẹp ca cäüt) l1 0.25l 0.25l Cäút phán bäú bäú trê vng gọc våïi cäút chëu lỉûc âãø tảo thnh l lỉåïi Våïi lỉåïi thẹp giỉỵa nhëp, lỉåüng cäút thẹp phán bäú phi ≥ 10% lỉåüng thẹp chëu læûc låïn nháút l2/l1 ≥ 3; ≥ 20% læåüng thẹp chëu lỉûc låïn nháút l2/l1 < 3; Cäút thẹp m cáúu tảo: tải vë trê bn gäúi lãn dáưm chênh, gäúi lãn tỉåìng, âỉåüc bäú trê vng gọc våïi gäúi theo sút chiãưu di gäúi Lỉåüng thẹp ny ≥ 1/3 lỉåüng thẹp chëu lỉûc v ≥ 5φ6/1m di, âỉåüc kẹo di qua mẹp gäúi ≥ 1/4 nhëp bn d Bố trí cốt thép dầm: l1 l α.l α.l α.l 1/6.l 1/6.l 1/6.l l l 1/8l 1/4l 1/4l ≥φ6/a200 1/3.l Lỉåïi thẹp Cáúu tảo Dáưm chênh 1/3.l Lỉåïi thẹp Chëu lỉûc Khung hn åí nhëp Khung thẹp dáưm chênh 15d Thanh näúi 15d l Khung thẹp cáúu tảo Khung thẹp trãn gäúi Chỉång Nãúu dng khung büc: + Giỉỵa nhëp bäú trê cäút dc chëu mä men dỉång åí mẹp dỉåïi, vo gáưn gäúi cọ thãø ún pháưn thẹp lãn âãø chëu mä men ám, thẹp cn lải kẹo vo gäúi ≥ + Trãn gäúi, ngoi cạc ún tỉì nhëp lãn, phi âàût thãm mäüt säú â theo u cáưu, xa gäúi tiãún hnh càõt båït cäút thẹp theo BÂB mä men Khung hn åí nhëp Cäüt Thanh näúi SÀN SƯỜN TỒN KHỐI CĨ BẢN KÊ CẠNH: 3.1 Sơ đồ kết cấu: l1 Sn gäưm bn sn v hãû sỉåìn âục liãưn khäúi, l Tè lãû cạc cảnh ca ä bn ≤ (thỉåìng láúy 1-1.5), l1 l1 kêch thỉåïc cạc cảnh l1, l2 = - 6m Chiãưu dy bn hb ≥ l1 ; 50 Xẹt mäüt ä bn kã cảnh chëu ti trng phán bäú âãưu tàng dáưn, biãún dảng ca bn: + Màût dỉåïi ca bn: Xút hiãûn cạc vãút nỉït theo phỉång âỉåìng phán giạc cạc gọc, cn åí giỉỵa bn cọ cạc vãút nỉït theo phỉång cảnh di + Màût trãn: Nóỳu caùc caỷnh laỡ ngaỡm cổùng thỗ coù caùc vóỳt nỉït chảy vng theo chu vi, nãúu kã tỉû thỗ caùc goùc baớn seợ bở vónh lón 3.2 l1 l2 l2 l2 l2 l2 l1 Bố trí thép bản: Màût dỉåïi Màût trãn Bäú trê cạc lỉåïi thẹp, cäút thẹp cọ thãø song song våïi cạc cảnh hồûc theo phỉång xiãn (chẹo vng gọc våïi cạc vãút nỉït), hiãûu qu chëu lỉûc nhau, nhiãn våïi lỉåïi cọ cäút thẹp song song våïi cạc cảnh thi cäng âån gin hån Nãn dng cạc lỉåïi hn: + Giỉỵa nhëp sỉí dủng cạc lỉåïi cọ cäút chëu lỉûc theo phỉång Cọ cạch bäú trê thẹp ny: Âàût thẹp âãưu (dng lỉåïi thẹp) v âàût thẹp khäng âãưu (dng lỉåïi chênh cho ton ä bn v lỉåïi phủ âàût giỉỵa ä bn) + Trãn gäúi: dng lỉåïi thẹp cọ cäút chëu lỉûc theo phỉång vng gọc våïi cạc sỉåìn, bãư räüng ca lỉåïi láúy bàòng 0.5l1 (cọ thãø dng lỉåïi hẻp våïi cäút ngang chëu lỉûc, nãúu lỉåïi räüng cọ cäút dc chëu lỉûc âỉåüc tri vng gọc våïi dáưm 0.5l1 0.5l1 lk KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP l2 l2 0.5l1 l2 0.5l1 Chỉång Nãúu dng lỉåïi büc: + Giỉỵa nhëp âàût theo toạn, vo gáưn gäúi (dy biãn lk) cọ thãø gim + Trãn gäúi: cọ thãø ún 1/2 -> 2/3 lỉåüng thẹp åí nhëp lãn, v âàût thãm cäút m xen k â u cáưu 3.3 Tính kê cạnh theo sơ đồ dẻo: Så âäö tênh: Theo kãút qu quan sạt sỉû lm viãûc ca kã cảnh, åí trảng thại CBGH theo cạc khe nổùt seợ hỗnh thaỡnh khồùp deớo, chia baớn thaỡnh caùc miãúng cỉïng (nhỉ váûy cọ thãø xem bn gäưm cạc miãúng cỉïng näúi våïi båíi cạc MII’ khåïp deío) ϕ - Mä men khåïp deío: Mkd = Ra.Fa.Z; M2 MII’ Mkd l mä men khåïp trãn âån vë di, ϕ Fa diãûn têch cäút thẹp trãn âån vë daìi, MI M1 M2 MI’ l2 Z l cạnh tay ân näüi lỉûc (Z ≈ 0.9h0) f Nóỳu caỷnh kó tổỷ thỗ mọ men trón cảnh âọ =0 MI’ M2 ’ Tênh bn theo PP âäüng lỉûc hc dỉûa trãn ngun l cán bàòng cäng MII kh dé ca näüi v lỉûc: ϕ ϕ ϕ ’ MI f MI Wq = WM (5 - 16) Cäng kh dé ca lỉûc: M1 M1 Wq = ∫ y.q.dF = q ∫ y.dF = q.V; (5 - 17) l1 F F Våïi V laì thãø têch cuớa hỗnh khọỳi taỷo bồới mỷt phúng baớn ban õỏửu v 3.l − l cạc miãúng cỉïng åí trảng thại CBGH, V = f.l1 ; Cäng khaí dé ca näüi lỉûc: WM = Σϕi.Mi.li; (5 - 18) Theo cáúu tảo ta cọ cạch bäú trê thẹp åí nhëp, âọ mä men khåïp cng khạc nhau: Khi bäú trê thẹp âãưu: WM = Σϕi.Mi.li = (2ϕ.M1 + ϕ.MI + ϕ.MI’).l2 + (2ϕ.M2 + ϕ.MII + .MII).l1 ; 2f 2f Vỗ khaù beù nón: ≈ tgϕ = ⇒ WM = [(2M1 +MI +MI’).l2 + (2M2 +MII +MII’).l1]; l1 l1 3.l − l Tỉì (5 - 16) ⇒ q l12 = (2M1 +MI +MI’).l2 + (2M2 +MII +MII’).l1; (5 - 19) 12 Khi bäú trê thẹp khäng âãưu: cäút thẹp chëu mä men dỉång giỉỵa nhëp gáúp âäi ây biãn nãn: M M WM = 2ϕ.M1.(l2 - 2lk) + 2ϕ 2.lk + (MI + MI’).ϕ.l2 + 2ϕ.M2.(l1 - 2lk) + 2ϕ 2.lk + (MII + MII’).ϕ.l1; 2 l − l Tỉì (5 - 16) ⇒ q l12 = (2M1 +MI +MI’).l2 + (2M2 +MII +MII’).l1 - 2.(M1 + M2).lk; (5 - 20) 12 Trong caïc phổồng trỗnh (5 - 19) & (5 - 20) coù chổùa mọ men cỏửn tỗm, coù thóứ lỏỳy M1 lm áøn säú, cn cạc mä KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP Chỉång men cn lải âỉåüc biãøu diãùn qua M1 våïi cạc hãû säú âỉåüc choỹn theo õióửu kióỷn õóứ hỗnh thaỡnh khồùp deớo: l M M' M' MI M II α= a2 = aI = ; a 'I = I aII = ; a 'II = II l1 M1 M1 M1 M1 M1 1,0 - 1,5 1,5 - 2,0 3.4 1,0 - 0,3 0,5 - 0,15 2,5 - 1,5 2,0 - 1,0 2,5 - 0,8 1,3 - 0,3 Tênh v cáúu tảo dáưm: Ti trng tỉì bn truưn vo dáưm sau: - Theo phỉång cảnh ngàõn dảng tam giạc, giạ trë låïn nháút l q.l1; - Theo phỉång cảnh di dảng hỗnh thang, giaù trở lồùn nhỏỳt laỡ q.l1; - Troỹng lỉåüng bn thán dáưm l g; Cọ thãø näüi lỉûc theo så âäư ân häưi hồûc do: Theo så âäư do: + Mä men åí nhëp biãn v gäúi thæï 2: g.l M = ± (0,7.M0 + ); (5 - 21) 11 + Mä men åí nhëp giỉỵa v gäúi giỉỵa: g.l M = ± (0,5.M0 + ); (5 - 21) 16 M0 laì mä men låïn nháút dáưm âån gin tỉång ỉïng q.l l Våïi ti trng phán bäú tam giạc: M0 = ; 12 q.l1 l (3 - 4.β2); Våïi taíi troỹng phỏn bọỳ hỗnh thang: M0 = 24 l Trong âoï: β = ; 2.l l1 l1 q.l1 l1 q.l1 l2 l2 l2 + Lỉûc càõt dáưm: MB MB ; Tải bãn trại gäúi thỉï 2: Q Btr = Q0 + ; l l = QCtr = QCph = = Q0; Tải gäúi thỉï nháút: QA = Q0 Tải cạc gäúi giỉỵa: Q Bph Trong âọ Q0 l lỉûc càõt ca dáưm âån gin, MB l mä men tải gäúi B (thỉï 2); Theo så âäư ân häưi: Tênh dáưm ân häưi våïi cạc PP ca CKC Cọ thãø qui âäøi ti trng thnh phán bäú âãưu âãø âån gin toạn: Våïi dảng tam giạc: qtõ = 5/8.qd; Vồùi daỷng hỗnh thang: qtõ = (1 - β2 + β3)qd; KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP Chæång 4 SÀN SƯỜN PANEN LẮP GHÉP: 4.1 ld Sơ đồ kết cấu: Sn gäưm: - Pa nen kã lãn dáưm hồûc tỉåìng; - Khong cạch giỉỵa cạc dáưm (nhëp ca panen) lp = (2,8 -> 6,8)m; - Nhëp dáöm ld = (4 -> 7,2)m; 4.2 Cấu tạo panen: lp ld ld lp Panen Dáöm lp lp Cäüt Tỉåìng a Panen đặc: Cọ thãø låïp hồûc nhiãưu låïp (gäưm 1låïp BTCT chëu lỉûc v låïp cạch ám, nhiãût) Chiãưu dy h = 80->150 Ỉu âiãøm: Dãù sn xút, nhanh, liãn kãút âån gin, chiãưu dy sn tháúp Nhỉåüc âiãøm: Täún VL, cạch ám kẹm 100 120 1000 40 1000 30 50 50 200 b Panen có lỗ: 580 Cọ thãø hồûc nhiãưu läù, màût càõt caùc lọự coù thóứ hỗnh thang, chổợ nhỏỷt, troỡn, bỏửu dủc Chiãưu cao tu thüc chiãưu di (nhëp) Chiãưu di (nhëp) = (2,5 -> 4,5)m Bãö räüng = (45 -> 60)cm loải läù; (90 -> 120)cm loải nhiãưu läù; Bãư dy cạnh = (2 -> 3)cm tu thüc vng nẹn hay kẹo Bãư dy sỉåìn = (2,5 -> 5)cm Ỉu âiãøm: Tảo âỉåüc tráưn v sn phàóng Cạch ám, cạch nhiãût täút, êt täún VL Nhỉåüc âiãøm: Khọ chãú tảo 200 25 1180 c Panen sườn: Gäưm bn v sỉåìn Thỉåìng cọ sỉåìn dc v cạc sỉåìn ngang cạch (1,5 -> 2,5)m Sỉåìn ngang cọ kêch thỉåïc bẹ hån sỉåìn dc, sỉåìn cọ thãø phêa trãn hồûc phêa dỉåïi (sỉåìn phêa dỉåïi bn nàòm vng nẹn s håüp l vãư màût chëu lỉûc, sỉåìn phêa trãn s cọ âỉåüc tráưn phàóng ) Chiãưu dy cạnh 50 -> 60 sỉåìn phêa dỉåïi; 30 -> 35 sỉåìn phêa trãn; 4.3 Tính tốn panen: 50 a Tính uốn tổng thể: 80 Så âäư tênh: Coi panen dáưm âån gin kã tỉû lãn dáưm Nhëp toạn: Láúy bàòng khong cạch trng tám cạc gäúi Ti trng: Gäưm ténh ti v hoảt ti phán bäú ca sn trãn diãûn têch bãư màût panen âang xẹt (âỉa vãư thnh ti trng phán bäú trãn dáưm bàòng ti trng sn nhán bãư räüng panen) Tiãút diãûn toạn: Âãø kh nàng chëu ún ca panen, qui âäøi TD panen vãư cạc dảng âån gin nhổ chổợ I, chổợ T KHOA XY DặNG DN DUNG & CÄNG NGHIÃÛP 200 350 1490 10 4.2 PHÂ TÍCH MƠME -ĐỘ CO G CỦA TIẾT DIỆ TỰ DO Ở GA G 4.2.1 Các giả thuyết Phân tích trình diển dạng đơn giản phân tích mơmen-độ cong (M-φ) Một số giả thuyết đơn giản lý thuyết uốn thiết lập để tính tốn quan hệ (M-φ) sau: Các tiết diện vuông góc với trục uốn phẳng trước uốn sau uốn N hư quan hệ độ cong φ biến dạng ε: φ = ε y với y khoảng cách từ mép đến trục trung hoà Tại cao độ tiết diện cấu kiện, biến dạng thép biến dạng bê tông (εs = εc) Các ứng suất thép (σs) bê tơng (σc) xác định từ quan hệ (σ−ε) đặc trưng vật liệu Các phương pháp tính tốn trình bày sau áp dụng cho hai kiểu tiết diện tự nở ngang: (1) BTCT có thép chịu kéo, (2) dầm BTCT có thép chịu kéo (phần 1) có thêm thép chịu nén (phần 2) 4.2.2 Phân tích mơmen-độ cong BTCT Trong tính tốn tay, mơmen mức độ cong (curvature) xác định: độ cong bê tông xuất nứt φcr (tại mômen gây nứt Mcr) độ cong bê tông biến dạng chảy dẻo φy (tại mômen chảy dẻo My) độ cong bê tông biến dạng cực hạn φu (tại mômen cực hạn Mu) Mặt cắt ngang BTCT trình bày Mục tiêu thiết lập đường quan hệ (Mφ) cho tiết diện Xét khoảng chiều rộng b = 12 in để tính tốn, Thép loại Grade 60 cường độ bê tông f'c = ksi Giả thiết lớp bê tông bảo vệ in Ba bước tính tốn phải thực giai đoạn: a) bắt đầu nứt, b) chảy dẻo, c) tới hạn Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G b = 12” D = 6” #4 @ 6” 1” a) Bắt đầu nứt (cracking) Bỏ qua tham gia cốt thép (bỏ qua chuyển đổi tiết diện tương đương), Ig = bD 12 × = = 216 in 12 12 Mô đun đàn hồi bê tơng: E c = 57000 Tính mơment gây nứt, M cr = fr Ig yt Tính độ cong bắt đầu nứt, φ cr = = 4000 ksi = 3604 ksi ,5 4000 216 × = 34,2 kip-in 1000 M cr 34 , = 4,4E-5 in-1 = E c Ig 3604 × 216 N hư toạ độ bắt đầu nứt (φcr, Mcr) đường quan hệ (φ-M) (4,4E-5 ; 34,2) b) Chảy dẻo (yield) Để tính tốn, sử dụng mơmen qn tính chuyển đổi nứt (cracked transformed moment of inertia) Biến dạng tới hạn thép chịu kéo biến dạng chảy dẻo εy Sự phân bố ứng suất bê tông giả thiết hình Chiều cao vùng bê tơng chịu nén đến trục trung hồ kd Biến dạng thép chịu kéo εy Đối với tiết diện BTCT cốt đơn ta có cơng thức, k= ρ n + (ρ n ) − ρ n với n tỷ số mô đun (n = Es/Ec) ρ = As/bd Đối với tiết diện ta có, d = D - - 0,5 × (4/8) = - - 0,25 = 4,75 in × (0,2in ) 29000 = 0,0070 ; n = = 8,04 3604 12 × 4,75 ⇒ k = 0,28 (giá trị hợp lý không?) Ans: k < 0,3 khơng bị phá hoại dòn ρ= Chương 4: QUAN HỆ MƠMEN - ĐỘ CON G Tính mơmen My quanh trọng tâm khối bê tông chịu nén, mà vị trí cách mép tiết diện khoảng kd/3, ta có: My = ∑ Asfs ( jd) = Asfs (d − kd / 3) My = (0,4in2 ) × 60× (4,75 − 0,28× 4,75 / 3) =103,4 kip-in Độ cong tương ứng: εy 0,0021 = φy = = 6,1E-4 in-1 d − kd 4,75 − 0,28× 4,75 N hư toạ độ điểm chảy dẻo (φy, My) đường quan hệ (φ-M) (6,1E-4 ; 103,4) c) Tới hạn (ultimate) Hình cung cấp thơng tin cần thiết để tìm mơmen tới hạn (Mu) độ cong tới hạn (φu) Giả thiết khối ứng suất bê tông chịu nén dạng chữ nhật kiểu Whitney-type (β1 = 0,85), Asf y 0,4 × 60 = 0,69 in chiều cao đến trục trung hoà là: c = = ' 0,85f c bβ1 0,85 × × 12 × 0,85 Mơmen tới hạn Mu tính bằng: M u = A s f y (d − 0,5β1c) = 0,4 × 60 × (4,75 − 0,5 × 0,85 × 0,69) = 106,9 kip-in ε 0,003 Độ cong tới hạn φu : φ u = c max = = 4,3E-3 in-1 c 0,69 N hư toạ độ điểm tới hạn (φu, Mu) (4,3E-3 ; 106,9) Chú ý có khác biệt nhỏ mômen My (104 kip-in) mômen Mu (107 kip-in) Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G 4.2.3 Phân tích mơmen-độ cong dầm BTCT Phân tích mẫu dầm BTCT có phương pháp tương tự ví dụ BTCT trình bày Hai trường hợp nghiên cứu : (a) có thép chịu kéo, (b) có thép chịu kéo chịu nén Các liệu trình bày bảng Khơng có thép chịu nén (khơng có 2#9) Phần 1: a) Bắt đầu nứt Ig 13310 (0,474) = 573 kip-in yt 11 M 573 = 1,19E-5 in-1 φ cr = cr = E c I g 3604 × 13310 M cr = fr = b) Chảy dẻo n = 8,04; ρ = 0,0099 ρ n + ( ρ n ) − ρ n = 0,327 kd 0,327× 20 My = Asf y (d - ) = 3,0 × 60× (20 − ) = 3207 kip-in 3 εy 0,0021 = 1,56E-4 in-1 φy = = d − kd 20 − 0,327 × 20 k = c) Tới hạn c= Asf y 0,85f c' bβ1 = 3,0 × 60 = 4,15 in 0,85 × × 15 × 0,85 βc 0,85 × 4,15 M u = A s f y (d - ) = 3,0 × 60 (20 ) 2 = 3282 kip-in Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G ε 0,003 = 7,2E-4 in-1 ⇒ µφ = φu/φy = 4,6 φ u = c max = c 4,15 Có thép chịu nén (có 2#9) Phần 2: a) Bắt đầu nứt (như trên) Ig 13310 (0,474) = 573 kip-in yt 11 M 573 = 1,19E-5 in-1 φ cr = cr = E c I g 3604 × 13310 M cr = fr = b) Chảy dẻo n = 8,04; ρ = 0,0099; ρ’ = 0,0066; d = 20’’; d’ = 2’’ d' k = ( ρ + ρ ' ) n + ( ρ + ρ ' ) n − ( ρ + ρ ' ) n = 0,301 d Phương trình tổng qt mơmen My : M y = A s f y (d - kd kd ) + A s' f s' (d ' ) 3 với ứng suất thép chịu nén hàm số khoảng cách k N ếu ứng suất thép chịu kéo fy, biến dạng thép chịu nén xác định qui tắc tam giác sau: kd − d ' f y = 17,3 ksi d − kd f s' = M y = 3,0 × 60 (20 - 0,301 × 20 0,301 × 20 ) + 2,0 × 17 ,3(2 ) 3 = 3238 kip-in φy = εy d − kd = 0,0021 = 1,50E-4 in-1 20 − 0,301 × 20 c) Tới hạn Tính tốn (φu , Mu) đòi hỏi số bước tính lặp để tìm vị trí trục trung hồ Trong tính tay, ban đầu giả thiết biến dạng thép chịu nén ε's vượt biến dạng chảy εy , giả thiết hậu kiểm c= A s f y − A 's f 's 0,85 f c' bβ1 = 3,0 × 60 − 2,0 × 60 = 1,38 in 0,85 × × 15 × 0,85 βc M u = (0,85f c' β1cb)(d - ) + A's f 's (d − d' ) = 3321 kip-in ε 0,003 = 2,20E-3 in-1 φ u = c max = c 1,38 Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G Kiểm tra lại giả thiết ban đầu cho biến dạng thép chịu nén, ε s' = ε c max ( c − d' ) = 0,0015 = 0,71εy < εy (εy = 0,0021) c N hư giả thiết ban đầu không đòi hỏi bước tính lặp khác Sau số lần tính lặp ta có: c = 2.90" ε s' = ε c max ( c − d' 2,9 − 2,0 ) = 0,003 ( ) = 0,00093 c 2,9 f s' = E c ε s' = 29000 × 0,00093 = 27 ksi βc M u = (0,85f c' β1cb)(d - ) + A's f 's (d − d' ) = 3331 kip-in ε 0,003 = 1,0E-3 in-1 ⇒ µφ = φu/φy = 6,7 φ u = c max = c 2,9 Bây khảo sát bảng cho BTCT tự nở ngang (khơng có cốt thép đai) Thép chịu nén BTCT không đai Không Có My 3207 3238 ← thay đổi φy 1,56E-4 1,50E-4 ← khơng đổi Mu 3282 3331 ← thay đổi φu 0,72E-3 1,0E-3 ← tăng 40% µφ 4,6 6,7 ← tăng 40% Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G 4.3 PHÂ TÍCH MƠME -ĐỘ CO G CỦA TIẾT DIỆ BN ÉP GA G 4.3.1 Tính tốn đáp ứng Trong tính tốn tay, mơmen mức độ cong (curvature) xác định tương tự tiết diện tự nở ngang: độ cong bê tông xuất nứt φcr (tại mômen gây nứt Mcr) độ cong bê tông biến dạng chảy dẻo φy (tại mômen chảy dẻo My) độ cong bê tông biến dạng cực hạn φu (tại mômen cực hạn Mu) Các phương pháp tính tốn trình bày sau áp dụng cho tiết diện dầm BTCT bị ép ngang (có bố trí thép đai) với cấu tạo hình vẽ Thép đai vòng #5 , bước đai sh = 4” Bước tính thứ xác định đặc trưng bê tông bị ép ngang Trong ví dụ này, mơmen uốn quanh trục x-x gây ứng suất nén phần đỉnh mặt cắt dầm BTCT (phía thép 2#9) Trục x y hình vẽ Với tiết diện trên, sử dụng cơng thức Chương ta có:  2A h 2A h ;ρx =  ⇐ ρy = " s h h "y sh h x  Do tiết diện chữ nhất, giả sử hệ số hiệu Ke = 0,75, ta có: ' f lx f c' = K eρ x f yh f c' = 0,75 × 0,0074 × Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G 60 = 0,083 ' f ly f c' = K eρ y f yh f c' = 0,75 × 0,0114 × 60 = 0,128 Sử dụng biểu đồ trên, ý cường độ ép ngang hiệu lón ví dụ f'ly , suy ta có K = f'cc / f'c = 1,6 cường dộ lõi bê tông bị ép ngang : ' f cc = Kf c' = 1,6 × = 6,4 ksi Sủ dụng mơ hình Mander với ký hiệu hình đây: Ta có thơng số cần thiết khác để thiết lập đường quan hệ (fc-εc) tiết diện bê tông bị ép ngang là: f yh = f y = 60 ksi; ε cu = 0,004 + εsm = 0,1 (thép Grade 60) 1,4(ρ x + ρ y )f yh ε sm f cc' Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G = 0,028 f' ε cc = 0,002[1 + 5( cc − 1)] = 0,008 f c' f' E sec = cc = 800 ksi; ε cc r= E c = 3604 ksi Ec = 1,28; E c − E sec fc = ' f cc xr r −1+ xr = x= εc = 125ε c ε cc 1024 ε c 0,28 + (125 ε c )1, 28 Đường quan hệ σ−ε trường hợp bê tông bị ép ngang bê tông tự nở ngang ví dụ biểu diển sau: Để tính mơmen tới hạn Mu độ cong tới hạn φu cho tiết diện này, thông số khối ứng suất bê tông chịu nén cần phải xác định Các số liệu biết gồm: K = f 'cc / f 'c = 1,6; chọn ε c max = ε cu = 0,028; ε cc = 0,008; Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G ε c max = 3,5 ε cc Từ biểu đồ ta có: β = 1, αβ = 0.9, α = 0.9 Lúc có đủ thơng số cần thiết để thực phân tích mơmen-độ cong a) Bắt đầu nứt (như trên) Ig 13310 (0,474) = 573 kip-in yt 11 M 573 = 1,19E-5 in-1 φ cr = cr = E c I g 3604 × 13310 M cr = fr = b) Chảy dẻo (như trên) n = 8,04; ρ = 0,0099; ρ’ = 0,0066; d = 20’’; d’ = 2’’ d' k = ( ρ + ρ ' ) n + ( ρ + ρ ' ) n − ( ρ + ρ ' ) n = 0,301 d kd − d ' f y = 17,3 ksi f s' = d − kd kd kd M y = A s f y (d ) + A s' f s' (d ' ) = 3238 kip-in 3 εy 0,0021 = 1,50E-4 in-1 φy = = d − kd 20 − 0,301 × 20 c) Tới hạn Trong tính tốn bên dưới, bỏ qua ảnh hưởng cốt thép chịu nén Tác động định bàn luận sau Do nén ngang, bê tơng có biến dạng max vượt xa biến dạng nứt vỡ (spalling) mà giả thiết εsp = 0,004 Do đó, giai đoạn tính tốn tới hạn cần giả thiết lóp bê tơng bảo vệ bị nứt vỡ (xem vùng chéo màu cam hình dưới) b = 15 - 2(2 - 9/16 - 5/8) = 13,2 in d = 22 - - (2 - 9/16 - 5/8) = 19,1 in α = 0.9 ; β1 = 1,0 Asf y 3,0 × 60 = 2,36 in c= = ' α f cc bβ1 0,9 × 6,4 × 13, × Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G βc ' M u = (αf cc β1cb)(d - ) = 3215 kip-in ε cm 0,0028 = 1,19E-2 in-1 φu = = c 2,36 φ µ φ = u = 79,3 φy Bây khảo sát bảng so sánh thông số cho BTCT tự nở ngang vả BTCT bị ép ngang (khơng/có cốt thép đai) a)- Thép đai BTCT cốt đơn Khơng Có My 3207 3207 ← không đổi φy 1,56E-4 1,56E-4 ← không đổi Mu 3282 3215 ← thay đổi φu 0,72E-3 1,19E-2 ← tăng 17 lần µφ 4,6 79,3 ← tăng 17 lần Xét tác động loại bỏ thép chịu nén ảnh hưởng kết tính tốn nào? Sẽ ảnh hưởng vị trí trục trung hồ c xét đến thép chịu nén? ⇒ c ↓ o Chú ý công thức: c = A s f y − A s' f s ' bβ1 α f cc N ếu biến dạng max bêtông εcu = const, c thay đổi (giảm) có xét đến thép chịu nén, độ cong tới hạn φu bị ảnh hưởng nào? ⇒ φu ↑ b)- Xét việc loại bỏ tái bền biến dạng (strain hardening) thép ảnh hưởng đến kết tính tốn nào? Ảnh hưởng cường độ Mu độ cong φu sao? fy ↑ ⇒ Μu ↑ φu ↓ Tóm lại, độ cong tới hạn φu (ultimate curvature) độ dẻo tới hạn µφ = φu/φy (curvature ductility) tiết diện thay đổi nào? Xét bảng đây: Tăng φu , µφ ? Tăng thép chịu kéo ρ = As/bd giảm Tăng thép chịu nén ρ' = A's/bd Tăng cường độ thép fy tăng giảm Tăng cường độ bê tông f ’c tăng Tăng thép đai ρ'' = ρx + ρy tăng Tăng lực nén dọc N Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G giảm 4.4 PHÂ TÍCH MƠME -ĐỘ CO G CỦA TIẾT DIỆ PHỨC TẠP N hiều phân tích mơmen-độ cong thực văn phòng thiết kế sử dụng phần mểm lập trình tính tốn Một số phần mểm tiêu biểu là: BIAX: phát triển Wallace UC Berkeley vào đầu thập niên 1990 UCFyber: phát triển Chadwell UC Berkeley vào cuối thập niên 1990, tham khảo Zevent website: http://www.zevent.com/framep.html SEQMC: phát triển SEQAD vào cuối thập niên 1990, tham khảo SC Solutions website: http://www.best.com/~solvers/seqmc.pdf Các chương trình tính tốn vận hành tn thủ tiêu chuNn thiết kế với nhiều đặc tính cách sử dụng khác Phần trình bày đơn giản cách thiết lập quan hệ mômen-độ cong cho tiết diện Một số kết nghiên cứu Priestley, Seible, Calvi Trong phần này, giả thiết quan hệ (σ−ε) bê tông xác lập trước (cho trước) Ở phân tích mơmen-độ cong giả thiết quan hệ (σ−ε) thép đàn hồi dẻo lý tưởng (elastic perfectly plastic) Giả thiết đơn giản để tính tốn bảo thủ Mà hình minh hoạ trên, Priestley, Seible, Calvi, thể đường cong (σ−ε) khác kéo thép: cường độ chảy dẻo danh nghĩa so với cường độ chảy dẻo thực đo vùng biến dạng chảy dẻo (điểm 1) biến dạng cực hạn (điểm 4) cho loại thép giá trị εsm khác cho loại thép (điểm 3) Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G Xét quan hệ σ−ε chịu tải đơn thép tròn Grade 60 (Priestley, Seible, Calvi) Đối với loại thép này, cường độ chảy dẻo mong đợi-expected yield strength (fye) lớn cường độ chảy dẻo danh nghĩa-nominal yield strength (fy) khoảng 1,1-1,3 lần Biến dạng εsh = 0,008 biến dạng cực hạn εsu = 0,12 Trong miền biến dạng tái bền - strain-hardening region (εsh ≤ εs ≤ εsu), ứng suất thép tính bằng:   0,12 − ε s f s = f ye 1,5 − 0,5   0,112    2   (4-1) Trong phân tích với trường hợp biến dạng bê tông lớn 0,003-0,004, người tính tốn phải phân biệt vùng bị ép ngang (confined) vùng tự nở ngang (unconfined) cấu kiện BTCT: bê tông nằm thép đai xem bị ép ngang bê tơng nằm ngồi thép đai xem tự nở ngang Phần lại giảng sử dụng thuật ngữ (nomenclature) Priestley, Seible, Calvi trình bày hình đây: Chương 4: QUAN HỆ MƠMEN - ĐỘ CON G Phân tích mơmen-độ cong phương pháp tính lặp bao gồm xét đến lập cân lực dọc cân mơmen tiết diện tính tốn lựa chọn giá trị biến dạng nén mép cùng, extreme fiber strain in compression (εc) Xét tiết diện tròn N ghiệm cho tiết diện chữ nhật tính tương tự đơn giản Tù cân lực dọc tiết diện ta có: 0,5D n 0,5D-c i =1 P= ∫ [bc(x)f c (ε x ) + (b(x) - bc(x) )fcu (ε x )]dx + ∑ Asi fs (ε xi ) (4-2) ε ε x = c ( x − 0,5D + c) c với: Tù cân lực mơmen tiết diện ta có: M= 0,5D n 0,5D-c i =1 ∫ [bc(x)f c (ε x ) + (b(x) - bc(x) )fcu (ε x )]xdx + ∑ Asif s (ε xi )x i (4-3) đó: φ= εc c Trong phương trình trên, fc(ε), fcu(ε), fs(ε) ứng suất bê tông bị ép ngang, tự nở ngang, thép dọc, chúng hàm số biến dạng; Asi diện tích thép dọc khoảng cách xi tính đến trục đối xứng Các đại lượng khác xem chi tiết hình bên Chú ý tiết diện hình chữ nhật, phương trình đơn giản hoá sau: P= 0,5D n 0,5D-c i =1 ∫ [bc f c (ε x ) + (b - b c) )f cu (ε x )]dx + ∑ Asi f s (ε xi ) Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G (4-4) 0,5D M= ∫[b f (ε c c n x ) + (b - b c )f cu (ε x )]xdx + ∑ A si f s (ε xi )x i 0,5D-c i =1 (4-5) Các bước giải tóm tắt sau : Chọn giá trị biến dạng mép εc lực dọc trục P Tính chiều cao vùng bê tơng nén c phương pháp thử dần kiểm tra sai số tương ứng với lực cho trước P biến dạng cho trước εc (sử dụng (4-2) hay (4-4)) Tính mơmen M độ cong φ cách dùng phương trình (sử dụng (4-3) hay (4-5)) Chọn giá trị biến dạng εc (cho đến biến dạng nén tới hạn bêtơng εcmax), sau lặp lại bước tính Chọn giá trị lực dọc trục P Chương 4: QUAN HỆ MÔMEN - ĐỘ CON G ... 2 .M1.(l2 - 2lk) + 2 2. lk + (MI + MI’).ϕ.l2 + 2 .M2.(l1 - 2lk) + 2 2. lk + (MII + MII’).ϕ.l1; 2 l − l Tỉì (5 - 16) ⇒ q l 12 = (2M1 +MI +MI’).l2 + (2M2 +MII +MII’).l1 - 2. (M1 + M2).lk; (5 - 20 )... deớo: l M M' M' MI M II α= a2 = aI = ; a 'I = I aII = ; a 'II = II l1 M1 M1 M1 M1 M1 1,0 - 1,5 1,5 - 2, 0 3.4 1,0 - 0,3 0,5 - 0,15 2, 5 - 1,5 2, 0 - 1,0 2, 5 - 0,8 1,3 - 0,3 Tênh v cáúu tảo dáưm:... khaù beù nón: tg = ⇒ WM = [(2M1 +MI +MI’).l2 + (2M2 +MII +MII’).l1]; l1 l1 3.l − l Tỉì (5 - 16) ⇒ q l 12 = (2M1 +MI +MI’).l2 + (2M2 +MII +MII’).l1; (5 - 19) 12 Khi bäú trê thẹp khäng âãưu:

Ngày đăng: 11/02/2020, 12:31

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w