1. Trang chủ
  2. » Giáo án - Bài giảng

WM WM trí tuệ nhân tạo cao hoàng trứ chương ter9 uncertain krr sinhvienzone com

72 36 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 553,25 KB

Nội dung

m e co en Z on Uncertain KR&R Si nh Vi Chapter 10 Si nh Vi en Z • Fuzzy logic on • Probability • Bayesian networks e co m Outline FOL fails for a domain due to: e co m Probability en Z on Laziness: too much to list the complete set of rules, too hard to use the enormous rules that result Vi Theoretical ignorance: there is no complete theory for the domain Si nh Practical ignorance: have not or cannot run all necessary tests e co m Probability en Z • Probability comes from: on • Probability = a degree of belief Frequentist: experiments and statistical assessment Vi Objectivist: real aspects of the universe Si nh Subjectivist: a way of characterizing an agent’s beliefs • Decision theory = probability theory + utility theory e co m Probability en Z P(Dice = 2) = 1/6 on Prior probability: probability in the absence of any other information Vi random variable: Dice Si nh domain = probability distribution: P(Dice) = e co m Probability on Conditional probability: probability in the presence of some evidence en Z P(Dice = | Dice is even) = 1/3 Vi P(Dice = | Dice is odd) = Si nh P(A | B) = P(A  B)/P(B) P(A  B) = P(A | B).P(B) e co m Probability en Z Si nh Vi S = stiff neck M = meningitis P(S | M) = 0.5 P(M) = 1/50000 P(S) = 1/20 on Example: P(M | S) = P(S | M).P(M)/P(S) = 1/5000 Y: en Z X: on Joint probability distributions: e co m Probability Si nh Vi P(X = xi, Y = yj) e co m Probability Axioms: on •  P(A)  en Z • P(true) = and P(false) = Si nh Vi • P(A  B) = P(A) + P(B) - P(A  B) e co m Probability • P(A) = - P(A) on Derived properties: en Z • P(U) = P(A1) + P(A2) + + P(An) collectively exhaustive Ai  Aj = false mutually exclusive Si nh Vi U = A1  A2   An 10 e co m Operations of Fuzzy Numbers • Arithmetic operations on intervals: on [a, b][d, e] = {fg | a  f  b, d  g  e} en Z [a, b] + [d, e] = [a + d, b + e] Si nh Vi [a, b] - [d, e] = [a - e, b - d] [a, b]*[d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be)] [a, b]/[d, e] = [a, b]*[1/e, 1/d] 0[d, e] 58 about e co m Operations of Fuzzy Numbers about on en Z about + about = ? + Si nh Vi about  about = ? 59 e co m Operations of Fuzzy Numbers • Discrete domains: on B = {yi: B(yi)} en Z A = {xi: A(xi)} Si nh Vi AB=? 60 e co m Operations of Fuzzy Numbers • Extension principle: ~ ~ ~ Vi g: U1 U2  V en Z induces on f: U1 U2  V Si nh [g(A, B)](v) = sup{(u1, u2) | v = f(u1, u2)}min{A(u1), B(u2)} 61 e co m Operations of Fuzzy Numbers • Discrete domains: on B = {yi: B(yi)} en Z A = {xi: A(xi)} Si nh Vi (A  B)(v) = sup{(xi, yj) | v = xi°yj)}min{A(xi), B(yj)} 62 e co m Fuzzy Logic Si nh Vi en Z on if x is A then y is B x is A* -y is B* 63 e co m Fuzzy Logic • View a fuzzy rule as a fuzzy relation Si nh Vi en Z on • Measure similarity of A and A* 64 on • As special expert systems e co m Fuzzy Controller en Z • When difficult to construct mathematical models Si nh Vi • When acquired models are expensive to use 65 e co m Fuzzy Controller IF the temperature is very high on AND the pressure is slightly low Si nh Vi en Z THEN the heat change should be slightly negative 66 actions FUZZY CONTROLLER en Z on Defuzzification model e co m Fuzzy Controller Fuzzy inference engine Fuzzy rule base Si nh Vi Controlled process conditions Fuzzification model 67 e co m Fuzzification Si nh Vi en Z on x0 68 Center of Area: Vi en Z on x = (A(z).z)/A(z) Si nh • e co m Defuzzification 69 on Center of Maxima: en Z M = {z | A(z) = h(A)} Vi x = (min M + max M)/2 Si nh • e co m Defuzzification 70 on Mean of Maxima: en Z M = {z | A(z) = h(A)} Vi x = z/|M| Si nh • e co m Defuzzification 71 Vi en Z on In Klir-Yuan’s textbook: 1.9, 1.10, 2.11, 2.12, 4.5 Si nh • e co m Exercises 72 ... 23 e co m Uncertain Question Answering Si nh Vi en Z on • The independence assumptions in a Bayesian Network simplify computation of conditional probabilities on its variables 24 m Uncertain. .. 0.00062 E B A J M 21 Si nh Vi en Z on • Why Bayesian Networks? e co m Bayesian Networks 22 e co m Uncertain Question Answering P(Query | Evidence) = ? on Diagnostic (from effects to causes): P(B... burglarized? Si nh Vi Q3: If the alarm sounds, how likely both John and Mary make calls? 25 e co m Uncertain Question Answering P(B | A) Si nh = aP(B  A) Vi P(B | A) en Z = aP(B  A) on = P(B

Ngày đăng: 30/01/2020, 23:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN