1. Trang chủ
  2. » Giáo án - Bài giảng

trí tuệ nhân tạo cao hoàng trứ chương ter9 uncertain krr sinhvienzone com

72 34 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 528,77 KB

Nội dung

om C nh Vi en Zo ne Uncertain KR&R Si Chapter 10 .C ne Si nh Vi en • Fuzzy logic Zo • Probability • Bayesian networks om Outline .C ne FOL fails for a domain due to: om Probability nh Vi en Zo Laziness: too much to list the complete set of rules, too hard to use the enormous rules that result Theoretical ignorance: there is no complete theory for the domain Si Practical ignorance: have not or cannot run all necessary tests Zo • Probability comes from: ne C • Probability = a degree of belief om Probability nh Vi en Frequentist: experiments and statistical assessment Objectivist: real aspects of the universe Subjectivist: a way of characterizing an agent’s beliefs Si • Decision theory = probability theory + utility theory om Probability nh Vi en P(Dice = 2) = 1/6 Zo ne C Prior probability: probability in the absence of any other information random variable: Dice domain = Si probability distribution: P(Dice) = om Probability ne C Conditional probability: probability in the presence of some evidence Zo P(Dice = | Dice is even) = 1/3 nh Vi en P(Dice = | Dice is odd) = P(A | B) = P(A  B)/P(B) Si P(A  B) = P(A | B).P(B) om Probability ne Zo nh Vi en S = stiff neck M = meningitis P(S | M) = 0.5 P(M) = 1/50000 P(S) = 1/20 C Example: Si P(M | S) = P(S | M).P(M)/P(S) = 1/5000 Y: C Si nh Vi en P(X = xi, Y = yj) Zo X: ne Joint probability distributions: om Probability om Probability C Axioms: ne •  P(A)  Zo • P(true) = and P(false) = Si nh Vi en • P(A  B) = P(A) + P(B) - P(A  B) om Probability C Derived properties: ne • P(A) = - P(A) Zo • P(U) = P(A1) + P(A2) + + P(An) collectively exhaustive Ai  Aj = false mutually exclusive Si nh Vi en U = A1  A2   An 10 om Operations of Fuzzy Numbers C • Arithmetic operations on intervals: Zo ne [a, b][d, e] = {fg | a  f  b, d  g  e} nh Vi en [a, b] + [d, e] = [a + d, b + e] [a, b] - [d, e] = [a - e, b - d] Si [a, b]*[d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be)] [a, b]/[d, e] = [a, b]*[1/e, 1/d] 0[d, e] 58 about ne about C om Operations of Fuzzy Numbers Zo about + about = ? + Si nh Vi en about  about = ? 59 om Operations of Fuzzy Numbers ne Si nh Vi en AB=? B = {yi: B(yi)} Zo A = {xi: A(xi)} C • Discrete domains: 60 om Operations of Fuzzy Numbers ne C • Extension principle: Zo f: U1 U2  V ~ nh Vi en induces ~ ~ g: U1 U2  V Si [g(A, B)](v) = sup{(u1, u2) | v = f(u1, u2)}min{A(u1), B(u2)} 61 om Operations of Fuzzy Numbers ne B = {yi: B(yi)} Zo A = {xi: A(xi)} C • Discrete domains: Si nh Vi en (A  B)(v) = sup{(xi, yj) | v = xi°yj)}min{A(xi), B(yj)} 62 om Fuzzy Logic Si nh Vi en Zo ne C if x is A then y is B x is A* -y is B* 63 om Fuzzy Logic ne C • View a fuzzy rule as a fuzzy relation Si nh Vi en Zo • Measure similarity of A and A* 64 om Fuzzy Controller ne C • As special expert systems Zo • When difficult to construct mathematical models Si nh Vi en • When acquired models are expensive to use 65 ne C IF the temperature is very high om Fuzzy Controller Zo AND the pressure is slightly low Si nh Vi en THEN the heat change should be slightly negative 66 actions C om Fuzzy Controller nh Vi en Zo ne Defuzzification model FUZZY CONTROLLER Fuzzy inference engine Fuzzy rule base Fuzzification model Si Controlled process conditions 67 ne C om Fuzzification nh Vi en Zo Si x0 68 ne C Center of Area: nh Vi en Zo x = (A(z).z)/A(z) Si • om Defuzzification 69 ne C Center of Maxima: nh Vi en Zo M = {z | A(z) = h(A)} x = (min M + max M)/2 Si • om Defuzzification 70 ne C Mean of Maxima: nh Vi en Zo M = {z | A(z) = h(A)} x = z/|M| Si • om Defuzzification 71 om Exercises nh Vi en Zo ne C In Klir-Yuan’s textbook: 1.9, 1.10, 2.11, 2.12, 4.5 Si • 72 ... M 23 om Uncertain Question Answering Si nh Vi en Zo ne C • The independence assumptions in a Bayesian Network simplify computation of conditional probabilities on its variables 24 om Uncertain. .. E).P(B).P(E) E Si B J A M 21 om Bayesian Networks Si nh Vi en Zo ne C • Why Bayesian Networks? 22 om Uncertain Question Answering ne C P(Query | Evidence) = ? Zo Diagnostic (from effects to causes):... house burglarized? Si Q3: If the alarm sounds, how likely both John and Mary make calls? 25 om Uncertain Question Answering C P(B | A) Zo nh Vi en = aP(B  A) ne = P(B  A)/P(A) P(B | A) = aP(B

Ngày đăng: 30/01/2020, 23:10

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN