1. Trang chủ
  2. » Giáo án - Bài giảng

WM trí tuệ nhân tạo cao hoàng trứ chương ter7 3 structured knowledge sinhvienzone com

42 45 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 42
Dung lượng 303,08 KB

Nội dung

m e co en Z on Structured Knowledge Si nh Vi Chapter e co m Logic Notations Si nh Vi en Z on Does logic represent well knowledge in structures? e co m Logic Notations assert P P en Z not P on Frege’s Begriffsschrift (concept writing) - 1879: Si nh if P then Q Vi P for every x, P(x) Q P x P(x) e co m Logic Notations x Vi en Z “Every ball is red” on Frege’s Begriffsschrift (concept writing) - 1879: Si nh “Some ball is red” x red(x) ball(x) red(x) ball(x) e co m Logic Notations en Z Universal quantifier: xPx on Algebraic notation - Peirce, 1883: Si nh Vi Existential quantifier: xPx e co m Logic Notations Algebraic notation - Peirce, 1883: en Z on “Every ball is red”: x(ballx —< redx) Si nh Vi “Some ball is red”: x(ballx • redx) Peano’s and later notation: e co m Logic Notations en Z on “Every ball is red”: (x)(ball(x)  red(x)) Si nh Vi “Some ball is red”: (x)(ball(x)  red(x)) e co m Logic Notations Existential graphs - Peirce, 1897: en Z on Existential quantifier: a link structure of bars, called line of identity, represents  Vi Conjunction: the juxtaposition of two graphs represents  Si nh Negation: an oval enclosure represents ~ e co m Logic Notations en Z owns donkey beats Si nh Vi farmer on “If a farmer owns a donkey, then he beats it”: e co m Logic Notations EG’s rules of inferences: on Erasure: in a positive context, any graph may be erased en Z Insertion: in a negative context, any graph may be inserted Vi Iteration: a copy of a graph may be written in the same context or any nested context Si nh Deiteration: any graph may be erased if a copy of its occurs in the same context or a containing context Double negation: two negations with nothing between them may be erased or inserted 10 e co m Conceptual Graphs on • Sowa, J.F 1984 Conceptual Structures: Information Processing in Mind and Machine Si nh Vi en Z • CG = a combination of Perice’s EGs and semantic networks 28 e co m Conceptual Graphs • 1968: term paper to Marvin Minsky at Harvard on • 1970's: seriously working on CGs en Z • 1976: first paper on CGs Si nh Vi • 1981-1982: meeting with Norman Foo, finding Peirce’s EGs • 1984: the book coming out • CG homepage: http://conceptualgraphs.org/ 29 relation relation type on concept On MAT: * Si nh Vi CAT: tuna en Z concept type (class) e co m Simple Conceptual Graphs individual referent generic referent 30 e co m Ontology • Ontology: the study of "being" or existence en Z on • An ontology = "A catalog of types of things that are assumed to exist in a domain of interest" (Sowa, 2000) Si nh Vi • An ontology = "The arrangement of kinds of things into types and categories with a well-defined structure" (Passin 2004) 31 top-level categories Si nh Vi en Z on e co m Ontology domain-specific 32 m Ontology e co Being Aristotle's categories Substance on Accident Property en Z Directedness Containment Si nh Vi Inherence Quality Relation Quantity Movement Activity Intermediacy Passivity Having Spatial Temporal Situated 33 m Ontology Point en Z on Area e co Geographical-Feature Geographical categories Block Dam Town Vi Terrain Si nh Country Wetland Mountain Line On-Land Road Border Bridge Airstrip Heliport On-Water River Railroad Power-Line 34 en Z on e co m Ontology Si nh Vi Relation 35 ANIMAL FOOD Si nh Vi Eat en Z on e co m Ontology PERSON: john Eat CAKE: * 36 on Has-Relative PERSON: * Si nh PERSON: john Vi en Z PERSON: john e co m CG Projection Has-Wife WOMAN: mary 37 MAT: * On MAT: * Vi Si nh  On en Z CAT: tuna on Neg e co m Nested Conceptual Graphs CAT: tuna It is not true that cat Tuna is on a mat 38  e co m Nested Conceptual Graphs on  CAT: * On MAT: * Si nh Vi en Z CAT: * coreference link Every cat is on a mat 39 e co m Nested Conceptual Graphs Fly-To PLANET: mars Vi en Z PERSON: julian Si nh Poss on  Past Julian could not fly to Mars 40 e co m Nested Conceptual Graphs en Z PERSON: julian Fly-To PLANET: mars Si nh Vi Poss on  Past Tom believes that Mary wants to marry a sailor 41 e co m Exercises • Reading: en Z on Sowa, J.F 2000 Knowledge Representation: Logical, Philosophical, and Computational Foundations (Section 1.1: history of logic) Si nh Vi Way, E.C 1994 Conceptual Graphs – Past, Present, and Future Procs of ICCS'94 42 ... Frames on • A vague paradigm - to organize knowledge in highlevel structures Vi en Z • “A Framework for Representing Knowledge - Minsky, 1974 Si nh • Knowledge is encoded in packets, called frames... quantifier: xPx on Algebraic notation - Peirce, 18 83: Si nh Vi Existential quantifier: xPx e co m Logic Notations Algebraic notation - Peirce, 18 83: en Z on “Every ball is red”: x(ballx —< redx)... containing context Double negation: two negations with nothing between them may be erased or inserted 13 m Existential Graphs en Z Insertion: in a negative context, any graph may be inserted on Erasure:

Ngày đăng: 30/01/2020, 23:10

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN