1. Trang chủ
  2. » Giáo án - Bài giảng

trí tuệ nhân tạo cao hoàng trứ chương ter7 3 structured knowledge sinhvienzone com

42 34 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 42
Dung lượng 303,12 KB

Nội dung

om C nh Vi en Zo ne Structured Knowledge Si Chapter om Logic Notations Si nh Vi en Zo ne C Does logic represent well knowledge in structures? om Logic Notations assert P P not P Zo ne C Frege’s Begriffsschrift (concept writing) - 1879: if P then Q nh Vi en P x P(x) Si for every x, P(x) Q P om Logic Notations Zo x nh Vi en “Every ball is red” x red(x) ball(x) red(x) ball(x) Si “Some ball is red” ne C Frege’s Begriffsschrift (concept writing) - 1879: Zo Universal quantifier: xPx ne C Algebraic notation - Peirce, 1883: om Logic Notations Si nh Vi en Existential quantifier: xPx ne C Algebraic notation - Peirce, 1883: om Logic Notations Zo “Every ball is red”: x(ballx —< redx) Si nh Vi en “Some ball is red”: x(ballx • redx) om Logic Notations ne C Peano’s and later notation: Zo “Every ball is red”: (x)(ball(x)  red(x)) Si nh Vi en “Some ball is red”: (x)(ball(x)  red(x)) .C Existential graphs - Peirce, 1897: om Logic Notations Zo ne Existential quantifier: a link structure of bars, called line of identity, represents  nh Vi en Conjunction: the juxtaposition of two graphs represents  Si Negation: an oval enclosure represents ~ om Logic Notations owns donkey beats Si nh Vi en farmer Zo ne C “If a farmer owns a donkey, then he beats it”: om Logic Notations C EG’s rules of inferences: ne Erasure: in a positive context, any graph may be erased Zo Insertion: in a negative context, any graph may be inserted nh Vi en Iteration: a copy of a graph may be written in the same context or any nested context Si Deiteration: any graph may be erased if a copy of its occurs in the same context or a containing context Double negation: two negations with nothing between them may be erased or inserted 10 om Conceptual Graphs ne C • Sowa, J.F 1984 Conceptual Structures: Information Processing in Mind and Machine Si nh Vi en Zo • CG = a combination of Perice’s EGs and semantic networks 28 om Conceptual Graphs C • 1968: term paper to Marvin Minsky at Harvard Zo ne • 1970's: seriously working on CGs nh Vi en • 1976: first paper on CGs • 1981-1982: meeting with Norman Foo, finding Peirce’s EGs Si • 1984: the book coming out • CG homepage: http://conceptualgraphs.org/ 29 relation ne concept Zo concept type (class) C om Simple Conceptual Graphs nh Vi en CAT: tuna Si individual referent On relation type MAT: * generic referent 30 om Ontology C • Ontology: the study of "being" or existence Zo ne • An ontology = "A catalog of types of things that are assumed to exist in a domain of interest" (Sowa, 2000) Si nh Vi en • An ontology = "The arrangement of kinds of things into types and categories with a well-defined structure" (Passin 2004) 31 top-level categories domain-specific Si nh Vi en Zo ne C om Ontology 32 om Ontology C Being Aristotle's categories Substance ne Accident Property Inherence Directedness Quantity Si Quality nh Vi en Zo Relation Movement Activity Containment Intermediacy Passivity Having Spatial Temporal Situated 33 om Ontology Geographical-Feature ne C Geographical categories Dam Terrain nh Vi en Block Point Zo Area Town Country Bridge Si Wetland Mountain Airstrip Heliport Line On-Land On-Water Road Border River Railroad Power-Line 34 Si nh Vi en Relation Zo ne C om Ontology 35 ANIMAL FOOD Si nh Vi en Eat Zo ne C om Ontology PERSON: john Eat CAKE: * 36 ne Has-Relative PERSON: * nh Vi en Zo PERSON: john C om CG Projection Has-Wife WOMAN: mary Si PERSON: john 37 Neg On MAT: * On MAT: *  nh Vi en Zo CAT: tuna ne C om Nested Conceptual Graphs Si CAT: tuna It is not true that cat Tuna is on a mat 38  C om Nested Conceptual Graphs Zo CAT: * On MAT: * nh Vi en CAT: * ne  Si coreference link Every cat is on a mat 39 .C om Nested Conceptual Graphs nh Vi en PERSON: julian Si Poss Zo ne  Fly-To PLANET: mars Past Julian could not fly to Mars 40 .C om Nested Conceptual Graphs PERSON: julian Si nh Vi en Poss Zo ne  Fly-To PLANET: mars Past Tom believes that Mary wants to marry a sailor 41 om Exercises ne C • Reading: nh Vi en Zo Sowa, J.F 2000 Knowledge Representation: Logical, Philosophical, and Computational Foundations (Section 1.1: history of logic) Si Way, E.C 1994 Conceptual Graphs – Past, Present, and Future Procs of ICCS'94 42 ... Frames Zo ne C • A vague paradigm - to organize knowledge in highlevel structures nh Vi en • “A Framework for Representing Knowledge - Minsky, 1974 Si • Knowledge is encoded in packets, called frames... quantifier: xPx ne C Algebraic notation - Peirce, 18 83: om Logic Notations Si nh Vi en Existential quantifier: xPx ne C Algebraic notation - Peirce, 18 83: om Logic Notations Zo “Every ball is red”:... containing context Double negation: two negations with nothing between them may be erased or inserted 13 om Existential Graphs C Prove: ((p  r)  (q  s))  ((p q)  (r s)) nh Vi en Iteration: a copy

Ngày đăng: 30/01/2020, 23:10

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN