Phan Huy Hưng- GV trường THPT Thanh Chương 3 Bài toán cực trị và ứng dụng trong việc giải bài thi trắc nghiệm I.Lý do chọn đề tài: Trong vật lý, có một số đại lượng được xác định bằng một số biểu thức là những hàm cực trị. Khi một đại lượng A nào đó biến đổi, có thể làm cho đại lượng B biến đổi nhưng chúng ta có thể tìm được giá trị của A để B đạt cực trị (lớn nhất hoặc nhỏ nhất). Trong thực tế, bài tập yêu cầu tìm giá trị của một đại lượng để các đại lượng khác có giá trị cực trị ( chúng tôi tạm gọi những bài toán dạng này là bài toán cực trị) là những bài toán thường gặp. Để giải các bài toán dạng này cần phải sử dụng một số tính chất đặc biệt của các hiện tượng vật lý hoặc sử dụng các phương pháp tìm cực trị của toán học. Đặc biệt hơn, trong một vài trường hợp, đây còn là cách duy nhất để giải bài tập trắc nghiệm khi bài ra không cho đầy đủ dữ kiện. Vì vậy trong chuyênđề nhỏ này chúng tôi xin được trình bày về phương pháp giải các bài toán cực trị thường gặp trong vật lý và ứng dụng của nó trong việc làm bài thi trắc nghiệm. II.Cơ sở lý thuyết. 1. Sử dụng hiện tượng cộng hưởng điện: Trong mạch điện xoay chiều, khi 2 1 LC ω = thì dòng điện hiệu dụng qua mạch đạt cực đại I Max = U R và công suất của dòng điện đạt giá trị cực đại P Max = U.I. 2. Sử dụng các phương pháp toán học: - Sử dụng đạo hàm - Sử dụng bất đẳng thức côsi: a + b ≥ 2 .a b ( dấu bằng xảy ra khi a = b) - Sử dụng tính chất của tam thức bậc hai: y = ax 2 + bx + c + với a >0 y Min khi x = 2 b a − + với a < 0 y Max khi x = 2 b a − - Dùng tính chất của phép cộng véc tơ: a b a b a b− ≤ + ≤ + r r r r r r 1 Phan Huy Hưng- GV trường THPT Thanh Chương 3 III.Một số trường hợp cụ thể: 1.Thay đổi L hoặc C hoặc f để I max hoặc P max Để giải bài toán dạng này, chúng ta sử dụng hiện tượng cộng hưởng điện trong đoạn mạch không phân nhánh RLC: Dòng điện đạt cực đại khi Z L = Z C hay 2 1 LC ω = . Khi đó I Max = U R và P Max = U.I.( với 2 f ω π = ) 2.Thay đổi R để P Max : Ta có ( ) 2 2 2 2 2 2 L C U U P RI R Z R Z Z = = = + − ⇔ ( ) 2 2 L C U P Z Z R R = − + vậy P max khi ( ) 2 L C Z Z R R − + nhỏ nhất mà ( ) 2 L C Z Z R R − + ( ) 2 L C Z Z≥ − nên P max khi ( ) 2 L C Z Z R R − = hay khi đó: 3.Thay đổi C để U C Max Từ ( ) 2 2 C C C L C Z U U Z I R Z Z = = + − ⇔ 22 2 2 2 1 C L L C C C U U Z ZR Z Z Z = + − + 2 2 2 2 1 C L L C C U U R Z Z Z Z = + − + (*) Đặt y = 2 2 2 2 1 L L C C R Z Z Z Z + − + và 1 C x Z = ta có y= (R 2 +Z L 2 )x – 2Z L +1 R = L C Z Z− P Max = 2 2 U R 2 Phan Huy Hưng- GV trường THPT Thanh Chương 3 Từ (*) ta có U Cmax khi y Min Mà theo tính chất của tam thức bậc hai, y Min khi x = - 2 b a (a>0) Vậy U C Max khi: 4.Thay đổi L để U Lmax Hoàn toàn tương tự như trường hợp 3 chúng ta có: U Lmax khi: 5.Thay đổi f để U Lmax ( ) 2 2 2 2 2 2 1 L L L C C L C L L Z U U U Z I R Z Z R Z Z Z Z = = = + + − − + 2 2 2 2 2 2 1 2 1 L U U R C L LC ω ω ω ⇔ = + − + 2 2 2 4 2 2 1 2 1 1 L U U R L C L LC ω ω ⇔ = + − + ÷ Đặt 2 2 2 4 2 2 1 2 1 1 R y L C L LC ω ω = + − + ÷ và 2 1 x ω = ta có 2 2 2 2 2 1 2 1 R y x x L C L LC = + − + ÷ Vì U không đổi nên U Lmax khi y min ⇔ 2 b x a − = (a>0) 2 2 L C L R Z Z Z + = 2 2 C L C R Z Z Z + = 3 Phan Huy Hưng- GV trường THPT Thanh Chương 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 R LC L L C R L C LC C ω ω − ⇔ = ⇔ = − f ω ⇒ ⇒ 6. Thay đổi f để U CMax Từ ( ) 2 2 C C C L C Z U U Z I R Z Z = = + − ⇒ 2 2 2 2 1 C L L C C U U R Z Z Z Z = + − + ⇔ 2 2 2 2 2 2 1 1 1 C U U R L L C C ω ω ω ω = + − + ⇔ ( ) 2 2 4 2 2 2 2 1 C U U L C R C LC ω ω = + − + Đặt ( ) 2 2 4 2 2 2 2 1y L C R C LC ω ω = + − + và x = 2 ω ⇒ ( ) 2 2 2 2 2 2 1y L C x R C LC x= + − + Do U không đổi nên U Cmax khi y Min ⇔ 2 b x a = − ( do a > 0 ) IV. Một số bài tập ví dụ: Ví dụ 1: Cho mạch điện xoay chiều nối tiếp gồm biến trở R, cuộn cảm có độ tự cảm L=15,9mH, điện trở R 0 =40 Ω và một tụ điện có điện dung 2 10 7 C π − = F Hiệu điện thế hai đầu đoạn mạch có tần số f=50H Z và giá trị hiệu dụng U=10 V. Tìm giá trị của R để công suất tiêu thụ trên biến trở R đạt cực đại. 2 2 2 2 2 2 2 LC R C L C ω − = 4 Phan Huy Hưng- GV trường THPT Thanh Chương 3 Giải Công suất tiêu thụ trên biến trở R: P R =RI 2 = ( ) ( ) 2 2 0 2 L C RU R R Z Z+ + − ⇔ ( ) 2 2 2 2 0 0 2 R L C RU P R R R R Z Z = + + + − ⇔ ( ) 2 2 2 0 0 2 R L C U P R Z Z R R R = + − + + Do U và R 0 không đổi nên P Rmax khi ( ) 2 2 0 L C R Z Z R Min R + − + Mà theo Định lý Cosi thì ( ) ( ) 2 2 2 2 0 0 . L C L C R Z Z R Z Z R R R R + − + − + ≥ = ( ) 2 2 0 L C R Z Z+ − Giá tri P Max đạt được khi: ( ) 2 2 0 L C R Z Z R R + − = ⇔ ( ) 2 2 2 0 L c R R Z Z= + − ⇔ ( ) ( ) 2 2 2 0 L C R R Z Z− = − Với Z C = 1 C ω = 1 2 fC π = 2 1 10 2. .50 7 π π − = 7 Ω Z L = L ω =15,9.10 -3 100. 3,14=5 Ω Ta có : R 2 - R 0 2 = (5-7) 2 = 4 Vậy R 2 = 164 hay R = 164Ω Ví dụ 2: Cho đoạn mạch xoay chiều nối tiếp gồm điện trở R 0 = 100 Ω cuộn cảm thuần có độ tự cảm 2 L H π = và một tụ điện có điện dung C biến đổi. Một vôn kế có điện trở rất lớn mắc giữa hai bản cực của tụ điện. hiệu điện thế hai đầu đoạn mạch là: ( ) 100 2 sin 100 .u t V π = Biến đổi điện dung C đến một giá trị C 0 thì thấy vôn kế chỉ giá trị cực đại bằng 125 V. Tìm R 0, C 0 . Giải U= 0 2 U U = = 100V; I = 0,5 2 A; cảm kháng Z L = L ω =100 Ω 5 Phan Huy Hưng- GV trường THPT Thanh Chương 3 Khi thay đổi C để U Cmax từ U C = z C L = ( ) 2 0 C L C Z U R Z Z+ − ⇔ 2 2 0 2 2 1 C L L C C U U R Z Z Z Z = + − + Đặt 2 2 0 2 2 1 l L C C R Z Z y Z Z + = − + và x = 1 C z ta có: ( ) 2 2 2 0 _ 2 1 L L y R Z x Z x= + + U Cmax khi y min ⇔ 2 2 0 0 1 2 L l C Zb x a R Z Z − = = = + (do a > 0) ( ) 2 2 0 0 1 L C L R Z Z Z + ⇒ = ( ) 2 2 ax 0 0 125 2 Cm L U U R Z R = + = Từ (1)và (2) ta tính được: R 0 =266,7 Ω , C 0 =5,7 F µ Ví dụ 3: Cho hai lực đồng quy có độ lớn bằng 9N và 12N. trong số các giá trị sau, giá trị nào là độ lớn của hợp lực? A. 1N B.2N C.15N D. 25N Giải Theo tính chất của phép cộng vectơ, ta có: a b a b a b− ≤ + ≤ + r r r r r r Nếu gọi F là hợp lực ta có: 12 9 12 9F− ≤ ≤ + ⇔ 3 21F≤ ≤ Vậy trong số các giá trị đó, F=15N là giá trị của hợp lực. 6