1. Trang chủ
  2. » Thể loại khác

Giải bài tập đtcs mohamed power electric

460 99 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 460
Dung lượng 9,78 MB

Nội dung

Choose VGG+ = 15 V to insure that MOSFET driven well into ohmic range to minimize on-state losses RG > 15 - = 30 ohms -10 (4x10 )(5x108) Estimate of RG at MOSFET turn-off: 100 VGG- + + 20 5x108 V/sec > (RG)(4x10-10) Choose VGG- = -15 V to insure that MOSFET is held in off-state and to minimize turn-off times 15 + = 115 ohms RG > (4x10-10)(5x108) Satisfy both turn-on and turn-joff requirements by choosing VGG+ = VGG= 15 V and RG > 115 ohms 28-2 a Circuit diagram shown below + R G1 D - o = 200 A Tsw V = 1000 V d R I f G2 Qs RG2 1000 When FCT is off we need VKG = (1.25) 40 = 31.25 V = (1000) R G1 + RG2 Now R G1 + RG2 = 10-6 ohms so 31.25 = (1000) (10-6) RG2 RG2 = 31.25 kW and RG1 = 969 kW Choose VGG+ = 15 V to insure that MOSFET driven well into ohmic range to minimize on-state losses RG > 15 - = 30 ohms -10 (4x10 )(5x108) Estimate of RG at MOSFET turn-off: 100 VGG- + + 20 5x108 V/sec > (RG)(4x10-10) Choose VGG- = -15 V to insure that MOSFET is held in off-state and to minimize turn-off times 15 + = 115 ohms RG > (4x10-10)(5x108) Satisfy both turn-on and turn-joff requirements by choosing VGG+ = VGG= 15 V and RG > 115 ohms 28-2 a Circuit diagram shown below + R G1 D R o = 200 A Tsw V = 1000 V d - I f G2 Qs RG2 1000 When FCT is off we need VKG = (1.25) 40 = 31.25 V = (1000) R G1 + RG2 Now R G1 + RG2 = 10-6 ohms so 31.25 = (1000) (10-6) RG2 RG2 = 31.25 kW and RG1 = 969 kW b MOSFET characteristics - large on-state current capability - low Ron - low BVDSS (BVDSS of 50-100 V should work) Chapter 29 Problem Solutions 29-1 Assume Ts = 120 °C and T a = 20 °C 0.12 ; A in m2 ; Eq (29-18) Rq,rad ≈ A Èd ˘ Í vert˙ 1/4 Rq,conv ≈ (1.34)(A) Ỵ DT ˚ ; Eq (29-20) Rq,conv ≈ 0.24 1/4 for DT = 100 °C A [dvert] A cube having a side of length dvert has a surface area A = [dvert]2 Rq,conv ≈ 0.4 [dvert]1.75 0.02 ; Rq,rad ≈ [dvert]2 Rq,conv Rq,rad Rq,sa = net surface-to-ambient thermal resistance = R q,conv + Rq,rad Rq,sa = 0.04 [dvert]1.75 + [dvert]2 Heat Sink # Volume [m]3 7.6x10-5 10-4 1.8x10-4 2x10-4 3x10-4 dv = (vol.)1/3 [m] 0.042 0.046 0.057 0.058 0.067 A = [dv]2 [m]2 0.011 0.013 0.019 0.002 0.027 dv1.75 0.004 0.046 0.0066 0.0069 0.0088 dv2 0.0018 0.0021 0.0032 0.0034 0.0045 Rq,sa [°C/W] 5.3 4.5 3.1 2.9 2.3 Rq,sa (measured) 3.2 2.3 2.2 2.1 1.7 Heat Sink # 10 11 12 Volume [m]3 4.4x10-4 6.810-4 6.1x10-4 6.3x10-4 7x10-4 1.4x10-3 dv = (vol.)1/3 [m] 0.076 0.088 0.085 0.086 0.088 0.11 A = [dv]2 [m]2 0.034 0.046 0.043 0.044 0.047 0.072 dv1.75 0.011 0.014 0.013 0.014 0.014 0.021 dv2 0.0058 0.0078 0.0071 0.0073 0.0078 0.012 Rq,sa [°C/W] 1.8 1.4 1.5 1.4 1.3 0.9 Rq,sa (measured) 1.3 1.3 1.25 1.2 0.8 0.65 Heat sink #9 is relatively large and cubical in shape with only a few cooling fins Heat sink #9 is small and flat with much more surface area compared to its volume Large surface-to-volume ratios give smaller values of Rq,sa 29-2 Rq,conv ≈ 0.24 1/4 for DT = 100 °C ; From problem 29-1 A [dvert] Rq,conv ≈ 24 [d vert]1/4 for DT = 100 °C and A = 10 cm2 = 10-3 m2 dvert Rq,conv cm 76 °C/W cm 113 °C/W 12 cm 141 °C/W 20 cm 160 °C/W Volume [m]3 4.4x10-4 6.810-4 6.1x10-4 6.3x10-4 7x10-4 1.4x10-3 dv = (vol.)1/3 [m] 0.076 0.088 0.085 0.086 0.088 0.11 A = [dv]2 [m]2 0.034 0.046 0.043 0.044 0.047 0.072 dv1.75 0.011 0.014 0.013 0.014 0.014 0.021 dv2 0.0058 0.0078 0.0071 0.0073 0.0078 0.012 Rq,sa [°C/W] 1.8 1.4 1.5 1.4 1.3 0.9 Rq,sa (measured) 1.3 1.3 1.25 1.2 0.8 0.65 Heat sink #9 is relatively large and cubical in shape with only a few cooling fins Heat sink #9 is small and flat with much more surface area compared to its volume Large surface-to-volume ratios give smaller values of Rq,sa 29-2 Rq,conv ≈ 0.24 1/4 for DT = 100 °C ; From problem 29-1 A [dvert] Rq,conv ≈ 24 [d vert]1/4 for DT = 100 °C and A = 10 cm2 = 10-3 m2 dvert Rq,conv cm 76 °C/W cm 113 °C/W 12 cm 141 °C/W 20 cm 160 °C/W B 160 B 140 120 R q ,conv °C/W B 100 80 B 60 40 20 0 10 12 14 16 18 20 dvert [cm] 29-3 Rq,conv ≈ (1.34)(A) Èd ˘ Í vert˙ 1/4 ; Eq (29-20) Ỵ DT ˚ Rq,conv ≈ 353 [DT]-.25 A = 10 cm2 and dvert = cm DT Rq,conv 60 °C 127 °C/W 80 °C 118 °C/W 100 °C 112 °C/W 120 °C 107 °C/W B 160 B 140 120 R q ,conv °C/W B 100 80 B 60 40 20 0 10 12 14 16 18 20 dvert [cm] 29-3 Rq,conv ≈ (1.34)(A) Èd ˘ Í vert˙ 1/4 ; Eq (29-20) Ỵ DT ˚ Rq,conv ≈ 353 [DT]-.25 A = 10 cm2 and dvert = cm DT Rq,conv 60 °C 127 °C/W 80 °C 118 °C/W 100 °C 112 °C/W 120 °C 107 °C/W 140 120 B B B B 100 R q ,conv °C/W 80 60 40 20 60 70 80 90 100 110 120 DT [°C] 29-4 Rq,rad = DT Ê Ê Ts ˆ4 Ê Ta ˆ4 ˆ ÁÁ ˜ Á ˜ ˜ 5.1 A Ë Ë100¯ - Ë100¯ ¯ 120 - Ta(° C) Rq,rad = 196 È ÈTa(° K)˘4 ˘˙ Í Í ˙ Ỵ239 - Ỵ 100 ˚ ˚ ; Eq (29-17) ; A = 10 cm2 and Ts = 120 °C Ta Rq,rad °C 128 °C/W 10 °C 123 °C/W 20 °C 119 °C/W 40 °C 110 °C/W 140 120 B B B B 100 R q ,conv °C/W 80 60 40 20 60 70 80 90 100 110 120 DT [°C] 29-4 Rq,rad = DT Ê Ê Ts ˆ4 Ê Ta ˆ4 ˆ ÁÁ ˜ Á ˜ ˜ 5.1 A Ë Ë100¯ - Ë100¯ ¯ 120 - Ta(° C) Rq,rad = 196 È ÈTa(° K)˘4 ˘˙ Í Í ˙ Ỵ239 - Ỵ 100 ˚ ˚ ; Eq (29-17) ; A = 10 cm2 and Ts = 120 °C Ta Rq,rad °C 128 °C/W 10 °C 123 °C/W 20 °C 119 °C/W 40 °C 110 °C/W 140 120 R B B B B 100 q ,rad 80 [ °C / W ] 60 40 20 0 10 15 20 25 30 35 T [°C ] a 29-5 Rq,rad = DT Ê Ê Ts ˆ4 Ê Ta ˆ4 ˆ ÁÁ ˜ Á ˜ ˜ 5.1 A Ë Ë100¯ - Ë100¯ ¯ Ts(° C) - 40 Rq,rad = 196 ÈÈT (° K)˘4 ˘˙ ÍÍ s ˙ ỴỴ 100 ˚ - 96˚ ; Eq (29-17) ; A = 10 cm2 and Ta= 40 °C Ts Rq,rad 80 °C 114 °C/W 100 °C 120 °C/W 120 °C 110 °C/W 140 °C 101 °C/W 40 140 120 R B B B B 100 q ,rad 80 [ °C / W ] 60 40 20 0 10 15 20 25 30 35 T [°C ] a 29-5 Rq,rad = DT Ê Ê Ts ˆ4 Ê Ta ˆ4 ˆ ÁÁ ˜ Á ˜ ˜ 5.1 A Ë Ë100¯ - Ë100¯ ¯ Ts(° C) - 40 Rq,rad = 196 ÈÈT (° K)˘4 ˘˙ ÍÍ s ˙ ỴỴ 100 ˚ - 96˚ ; Eq (29-17) ; A = 10 cm2 and Ta= 40 °C Ts Rq,rad 80 °C 114 °C/W 100 °C 120 °C/W 120 °C 110 °C/W 140 °C 101 °C/W 40 120 B B B B 100 R q,rad 80 [ °C / W ] 60 40 20 80 90 100 T 29-6 PMOSFET,max = 150 ° C - 50 ° C ° C/W 110 s 120 = 100 W ; 100 W = 50 + 10-3 fs PMOSFET = 50 + 10-3 • 2.5x104 = 75 W Rq,ja = Rq,jc + Rq,ca = 150 ° C - 35 ° C 75 W Rq,ca = 1.53 - 1.00 = 0.53 °C/W 140 [ °C ] Solving for fs yields fs = 50 kHz 29-7 130 = 1.53 °C/W 120 B B B B 100 R q,rad 80 [ °C / W ] 60 40 20 80 90 100 T 29-6 PMOSFET,max = 150 ° C - 50 ° C ° C/W 110 s 120 = 100 W ; 100 W = 50 + 10-3 fs PMOSFET = 50 + 10-3 • 2.5x104 = 75 W Rq,ja = Rq,jc + Rq,ca = 150 ° C - 35 ° C 75 W Rq,ca = 1.53 - 1.00 = 0.53 °C/W 140 [ °C ] Solving for fs yields fs = 50 kHz 29-7 130 = 1.53 °C/W 120 B B B B 100 R q,rad 80 [ °C / W ] 60 40 20 80 90 100 T 29-6 PMOSFET,max = 150 ° C - 50 ° C ° C/W 110 s 120 = 100 W ; 100 W = 50 + 10-3 fs PMOSFET = 50 + 10-3 • 2.5x104 = 75 W Rq,ja = Rq,jc + Rq,ca = 150 ° C - 35 ° C 75 W Rq,ca = 1.53 - 1.00 = 0.53 °C/W 140 [ °C ] Solving for fs yields fs = 50 kHz 29-7 130 = 1.53 °C/W

Ngày đăng: 18/12/2019, 09:34

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w