1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ MINI TEST 05

18 194 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,14 MB

Nội dung

Khóa luyện đề nâng cao 2020 Sưu tầm biên soạn ĐÁP ÁN CHI TIẾT Phạm Minh Tuấn ĐỀ MINI TEST 05 ĐỀ CHÍNH THỨC Thời gian: 45 phút (khơng kể thời gian phát đề) Đề thi gồm có trang, 15 câu Họ tên:…………………………………………………Số báo danh:……………………… Câu Một người gửi tiết kiệm với số tiền gửi A đồng với lãi suất 6% năm, biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào gốc để tính gốc cho năm Sau 10 năm người rút số tiền gốc lẫn lãi nhiều số tiền ban đầu 100 triệu đồng? Hỏi người phải gửi số tiền A ? A 145037058,3 đồng B 55839477,69 đồng C 126446597 đồng D 111321563,5 đồng Hướng dẫn giải Từ công thức lãi kép ta có Tn  A 1  r  n Theo đề ta có n  10 10   100.106  A  A 1  0,06   100.106  A 1,0610  r  0,06 T  A  100.10  n 100.106 A  A  126446597 (đồng) 1,0610   Câu  Một người gửi M triệu đồng vào ngân hàng với lãi suất 8, 4% / năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn để tính lãi cho năm Hỏi sau năm người có nhiều gấp đơi số tiền mang gửi? A 10 năm B năm C năm D năm Hướng dẫn giải Theo ta có M  M 1  r   M 1,084  n n Suy  1,084    n  8, 59 n Câu Một người gửi 150 triệu đồng vào ngân hàng với kì hạn tháng (một quý), lãi suất 5% quý theo hình thức lãi kép Sau tháng người gửi thêm 150 triệu Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 đồng với hình thức lãi suất Hỏi sau năm tính từ lần gửi người nhận số tiền gần với kết nhất? A 240,6 triệu đồng B 247,7 triệu đồng C 340,6 triệu đồng D 347,7 triệu đồng Hướng dẫn giải Sau tháng người thu số tiền vốn lẫn lãi M1  150 1  5%  ( triệu đồng) Sau năm tính từ lần gửi người nhận vỗn lẫn lãi là: M2  150  M1 1  5%   347,7 ( triệu đồng) Câu Chị Minh muốn mua điện thoại trị giá 20 triệu đồng, chưa đủ tiền nên chị chọn mua hình thức trả góp hàng tháng (số tiền trả góp tháng nhau) với lãi suất 30% / năm trả trước triệu đồng Hỏi tháng chị phải trả số tiền gần với số tiền để sau năm kể từ ngày mua điện thoại, chị trả hết nợ, biết kì trả nợ sau ngày mua điện thoại tháng tính lãi hàng tháng số dư nợ thực tế tháng A 1,42 triệu B 4,7 triệu C 1,46 triệu D 1,57 triệu Hướng dẫn giải Số tiền chị Minh nợ lại sau trả triệu 15 triệu đồng lãi suất 2,5% / tháng Gọi A triệu số tiền hàng tháng chị Minh trả cửa hàng điện thoại Như Sau tháng số tiền nợ lại lại là: 15(1  0,025)  A Sau tháng số tiền nợ lại là: 15(1  0,025)2  A   0,025   A Sau tháng số tiền nợ lại là: 15(1  0,025)3  A(1  0,025)2  A(1  0,025)  A … Sau 12 tháng số tiền nợ lại là: 15(1  0,025)12  A (1  0,025)11   (1  0,025)  1   (1  0,025)12   15.0,025.(1  0,025)12  A   15(1  0,025)12  A    0,025 (1  0,025)12     A  1,462306905 Câu Một người gửi vào ngân hàng số tiền tiết kiệm 73000000 đồng theo hình thức lãi kép, nhằm mục đích sau năm thu số tiền 100000000 đồng Tuy nhiên kế hoạch tài thay đổi nên người khơng rút tiền mà để sau 10 năm rút toàn gốc lãi Giả sử suốt trình gửi 10 năm, lãi suất ngân hàng Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 không thay đổi, hỏi số tiền mà người thu (sau 10 năm) gần với số số sau (đơn vị: triệu đồng): B 137, A 148 D 187,7 C 137 Hướng dẫn giải Gọi r (r  0) lãi suất gửi tiền, từ giả thiết tốn, theo cơng thức lãi kép ta có: 73   r   100   r  5 100 100 r 1 73 73 Suy tổng số tiền người thu sau 10 năm là: 73   r  10 Câu  100   73    136,9863 (triệu đồng)  73  Một người gửi 300 triệu đồng vào ngân hàng với lãi suất 7% / năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào gốc để tính lãi cho năm Hỏi sau năm, người nhận số tiền nhiều 600 triệu đồng bao gồm gốc lãi? Giả định suốt thời gian gửi, lãi suất khơng đổi người khơng rút tiền A năm B 10 năm C 11 năm D 12 năm Hướng dẫn giải Kí hiệu số tiền gửi ban đầu A , lãi suất kì hạn m số tiền gốc lãi có sau n kì hạn A   m  n Do đó, số tiền gốc lãi người nhận sau n năm 300.1,07 n triệu đồng Số tiền gốc lãi nhận nhiều 600 triệu đồng  300.1,07 n  600  n  log1,07  10,245 Vậy sau 11 năm người nhận số tiền nhiều 600 triệu đồng bao gồm gốc lãi Câu Một người gửi vào ngân hàng 100 triệu đồng với lãi suất 5% kì hạn tháng theo hình thức lãi kép Sau tháng, người gửi thêm vào 20 triệu đồng với kì hạn lãi suất trước Tính tổng số tiền người nhận (cả vốn lẫn lãi) sau năm kể từ ngày bắt đầu gửi tiền vào ngân hàng (kết làm tròn đến hàng phần chục) biết người khơng rút tiền suốt thời gian gửi A 145,9 triệu đồng B 143,6 triệu đồng C 242, triệu đồng D 215, triệu đồng Hướng dẫn giải Số tiền vốn lẫn lãi sau tháng gửi là: 100 1  0,05   110,25 (triệu đồng) Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 Vì người gửi thêm vào 20 triệu đồng nên số tiền người gởi ngân hàng lúc (sau tháng) 110,25  20  130,25 (triệu đồng) Sau tháng nữa, số tiền vốn lẫn lãi người nhận là: 130, 25 1  0,05   143,6 (triệu đồng) Câu Anh Hưng làm lĩnh lương khởi điểm 4.000.000 đồng/tháng Cứ năm, lương anh Hưng lại tăng thêm 7% /1 tháng Hỏi sau 36 năm làm việc anh Hưng nhận tất tiền? (Kết làm tròn đến hàng nghìn đồng) A 1.287.968.000 đồng B 1.931.953.000 đồng C 2.575.937.000 đồng D 3.219.921.000 đồng Hướng dẫn giải ọi a số tiền lương khởi điểm, r % lương tăng thêm tháng Số tiền lương ba năm đầu tiên: T1  36a Số tiền lương ba năm kế tiếp: T2  36  a  a.r   36a 1  r  Số tiền lương ba năm tiếp nữa: T3  36a 1  r  … Số tiền lương ba năm cuối: T12  36a 1  r  11 Vậy sau 36 năm làm việc anh Hưng nhận được: 1    r 1    r 2    r 3   1  r 11  a.36  2.575.936983   Câu 2.575.937.000 đồng Chị Lan có 400 triệu đồng mang gửi tiết kiệm hai loại kì hạn khác theo hình thức lãi kép Chị gửi 200 triệu đồng theo kì hạn quý ( tháng) với lãi suất 2,1% quý, 200 triệu đồng lại chị gửi theo kì hạn tháng với lãi suất 0,73% tháng Sau gửi năm, chị rút nửa số tiền loại kì hạn theo quý gửi vào loại kì hạn theo tháng Hỏi sau năm kể từ gửi tiền lần đầu, chị Lan thu tất tiền lãi (làm tròn đến hàng nghìn)? A 79760000 đồng B 74813000 đồng C 65393000 đồng D 70656000 đồng Hướng dẫn giải Gọi T1 số tiền gửi theo quý T2 số tiền gửi theo tháng năm thứ T3 số tiền gửi theo quý T4 số tiền gửi theo tháng năm thứ hai Trong năm đầu ta có: Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 T1  200 1  0,021 (triệu đồng) T2  200 1  0,0073  12 (triệu đồng) Trong năm thứ ta có: T3  T1  0,021 (triệu đồng)   T  12 T4   T2   1  0,0073  (triệu đồng) 2  Sau năm tổng số tiền thu là: T  T3  T4  474 813 000 (đồng) Vậy số tiền lãi chị Lan thu là: 474813000  400000000  74813000 (đồng) Câu 10 Ông Bình vay vốn ngân hàng với số tiền 100000000 đồng Ơng dự định sau năm trả hết nợ theo hình thức: sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ, hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần Hỏi, theo cách đó, số tiền a mà ơng phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất hàng tháng 1, 2% khơng thay đổi thời gian ơng hồn nợ A a  C a  12.10  1,012  59 1,012   60 12.10  1,012  1,012  60 1 (đồng) B a  60 (đồng) D a  12.10  1,012  60 (đồng) 1,012   60 12.10  1,012  1,012  60 1 59 (đồng) Hướng dẫn giải Gọi m, r , Tn , a số tiền vay ngân hàng, lãi suất hàng tháng, tổng số tiền vay lại sau n tháng, số tiền trả đặn tháng ● Sau hết tháng thứ  n  1 lại: T1  m  r  1  a ● Sau hết tháng thứ hai  n   lại: T2   m  r  1  a   r  1  a 2 2 a  m  r  1  a  r  1  a  m  r  1  a  r    m  r  1   r  1  1  r 2  a  ● Sau hết tháng thứ ba  n   còn: T3   m  r  1   r  1  1   r  1  a  r  Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 3 a  m  r  1   r  1  1  r n n a ● Sau hết tháng thứ n lại: Tn  m  r  1   r  1  1  r  60  1,  n 12.10   1 m  r  1 r  100  Áp dụng cơng thức trên, ta có Tn   a   n 60  r  1   1,     100    (đồng) Câu 11 Chú Tư gửi vào ngân hàng 50 triệu đồng với lãi suất 0,6%/tháng Sau tháng, Tư đến ngân hàng rút tháng triệu đồng để chi tiêu hết tiền thơi Sau số tròn tháng Tư rút hết tiền gốc lẫn lãi Biết suốt thời gian đó, ngồi số tiền rút tháng Tư không rút thêm đồng kể gốc lẫn lãi lãi suất không đổi Vậy tháng cuối Tư rút số tiền (làm tròn đến đồng)? A 1840270 đồng B 3000000 đồng C 1840269 đồng D 1840268 đồng Hướng dẫn giải Áp dụng công thức tính số tiền lại sau n tháng Sn  A   r  n 1  r  X n 1 r A  50 triệu đồng, r  0,6 X  triệu đồng ta Sn  50.1,006n  1,006n  0,006 Để rút hết số tiền ta tìm số nguyên dương n nhỏ cho Sn   50.1,006n  1,006n  500   500  450.1,006n   n  log1,006  n  18 0,006 450 Khi số tiền tháng cuối mà Tư rút  1,00617   S17 1,006  50.1,00617   1,006  1,840269833 triệu đồng  1840270 đồng 0,006   Câu 12 Để chuẩn bị cho việc mua nhà, chị An thực việc tiết kiệm cách tháng gửi đặn vào ngân hàng 10 triệu đồng/tháng Biết thời gian chị An gửi tiền ngân hàng áp dụng mức lãi suất 0,65 % tháng chị An không rút lãi lần Hỏi chị An phải gửi tối thiểu tháng để có số tiền 500 triệu đồng bao gồm tiền gốc tiền lãi? A 41 tháng B 42 tháng C 43 tháng D 44 tháng Hướng dẫn giải Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 Chị An hàng tháng gửi vào ngân hàng số tiền A đồng, kì hạn tháng với lãi suất r% tháng Cuối tháng thứ 1, chị An có số tiền là: P1  A  A.r  A   r  Đầu tháng thứ 2, chị An có số tiền là: P1  A  A   r   A  A  A   r   A 1    r   Cuối tháng thứ 2, chị An có số tiền là: P2  P1  P1 r  A  A   r    A  A   r   r  A   r   1  r     Đầu tháng thứ 3, chị An có số tiền là: 2 P2  A  A   r     r    A  A 1    r     r       Cuối tháng thứ 3, chị An có số tiền là: 2 P3  P2  P2 r  A 1    r     r    A 1    r     r   r  A 1  r   1  r   1  r        ………………… Cuối tháng thứ n, chị An có số tiền là:   n n 1 n 2  Pn  A   r     r     r      r     r     Sn    Pn  A 1  r  1  r  n 1 r A  10 (triệu đồng), r  0,65% n số tháng gửi Theo giả thiết Pn  500  A   r  1  r  r n 1  500    r   n 500r 1 A 1  r   500r   500.0,0065   n  log1r     log10.0065     43,19  A 1  r    10   0,0065       Vì n nguyên dương nên n  44 Vậy phải gửi tối thiểu 44 tháng chị An có số tiền 500 triệu đồng Câu 13 Anh Hùng vay ngân hàng 800 triệu đồng với lãi suất 0,8% /tháng Anh ta muốn trả nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, anh bắt đầu trả nợ; hai lần trả nợ liên tiếp cách tháng, lần anh Hùng trả nợ cho ngân hàng số tiền cố định không đổi 15 triệu đồng ( tháng cuối trả 15 triệu Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 đồng) Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi sau tháng kể từ ngày vay trả hết nợ cho ngân hàng ? A 69 tháng B 68 tháng C 70 tháng D 71 tháng Hướng dẫn giải Gọi số tiền vay ban đầu M (triệu đồng), số tiền hoàn nợ tháng m (triệu đồng), lãi suất tháng ( r % /tháng) Hết tháng thứ nhất, số tiền vốn lẫn lãi anh Hùng nợ ngân hàng M  Mr  M   r  Ngay sau anh Hùng hồn nợ số tiền m nên số tiền để tính lãi cho tháng thứ hai M   r   m Do hết tháng thứ hai, số tiền vốn lẫn lãi anh Hùng nợ ngân hàng  M   r   m    r   M 1  r   m 1  r  Ngay sau anh Hùng lại hồn nợ số tiền m nên số tiền để tính lãi cho tháng thứ ba M 1  r   m 1  r   m Do hết tháng thứ ba, số tiền vốn lẫn lãi anh Hùng nợ ngân hàng  M   r   m   r   m    r   M   r 3  m   r 2  m   r   m   Cứ tiếp tục lập luận ta thấy sau tháng thứ n , n  , số tiền vốn lẫn lãi anh Hùng nợ ngân hàng m   r  n n n1 n M 1  r   m 1  r   m 1  r    m 1  r   m  M   r    r n 1  1  Sau tháng thứ n trả hết nợ ta có M 1  r  n m   r    r n 1 n  1    m  M 1  r  r  m  r n  m  M  r n r      n  r       r   m  Mr   m  1  r   n n m m  n  log1r m  Mr m  Mr  15  Thay số với M  800 , r  0,8% , m  15 ta n  log1,008    69,8  15  800.0,008  (tháng) Vậy sau 70 tháng kể từ ngày vay anh Hùng trả hết nợ cho ngân hàng Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 Câu 14 Đầu tháng / 2019 , cô Lưu Thêm cần mua xe máy Honda SH với giá 80.990.000 đồng Cô gửi tiết kiệm vào ngân hàng với số tiền 60.000.000 đồng với lãi suất 0,8% /tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Do sức ép thị trường nên tháng loại xe Honda SH giảm 500.000 đồng Vậy sau cô đủ tiền mua xe máy? A 20 tháng B 21 tháng C 22 tháng D 23 tháng Hướng dẫn giải Áp dụng công thức lãi kép, ta có số tiền người nhận (cả vốn ban đầu lãi) sau n tháng là: T  A   r  n n  0,8   60.10     100  Số tiền xe Honda SH giảm n tháng là: p  80990000  500000n Để Lưu Thêm mua xe Honda SH thì: T  p n  0,8   60.10    n  20, 58771778   80990000  500000n   100  Câu 15 Thầy Quý mua xe ôtô với giá tỷ 500 triệu đồng Thẩy trả trước số tiền tỷ đồng Số tiền lại thầy tốn theo hình thức trả góp với lãi suất tính tổng số tiền nợ 0,8% tháng Kể từ ngày mua, sau tháng thầy trả số tiền cố định 20 triệu đồng (cả gốc lẫn lãi) Thời gian (làm tròn đến hàng đơn vị) để thầy trả hết nợ A 25 tháng B 26 tháng C 28 tháng D 29 tháng Hướng dẫn giải Tổng số tiền thầy Quý nợ A0  500 triệu đồng Số tiền thầy nợ hết tháng thứ là: A1  A0  0,8% A0  20  1,008 A0  20 Số tiền thầy nợ hết tháng thứ hai là: A2  A1  0,8% A1  20  1,008 A1  20  1,008 1,008 A0  20   20  1,008  A0  20 1,008  1 Số tiền thầy nợ hết tháng thứ ba là: A3  A2  0,8% A2  20  1,008 A2  20  1,008  1,008  A0  20  1,008  1   20  1,008  A0  20 1,008   1,008  1     Số tiền thầy nợ hết tháng thứ n là: Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 n n 1 n An   1,008  A0  20  1,008   1,008    1   Ta có:  1,008  1,008    1,008  n  1,008  n1 tổng n số hạng cấp số n 1   1,008     125  1,008 n  1 nhân có số hạng u1  q  1,008 , đó: Sn       1,008 n n Thầy Quý trả hết nợ An    1,008  A0  2500 1,008   1     2000 1,008   2500  1,008   n n 5  n  log1,008  28,004 tháng 4 Vậy thầy Quý trả hết nợ sau 29 tháng Câu 16 Lãi suất tiền gửi tiết kiệm ngân hàng thời gian qua liên tục thay đổi Bạn Nam gửi số tiền ban đầu triệu đồng với lãi suất 0,7% / tháng Chưa đầy năm, lãi suất tăng lên 1,15% / tháng nửa năm bạn Nam tiếp tục gửi Sau nửa năm lãi suất giảm xuống 0,9% / tháng Bạn Nam tiếp tục gửi thêm số tháng tròn Biết rút số tiền bạn Nam nhận vốn lẫn lãi 5747478,359 đồng (chưa làm tròn) Hỏi bạn Nam gửi tiết kiệm tháng ? (Trong suốt trình gửi lãi nhập gốc) A 15 tháng B 16 tháng C 14 tháng D 19 tháng Hướng dẫn giải Gọi n số tháng gửi với lãi suất 0,7% tháng m số tháng gửi với lãi suất 0,9% tháng Khi đó, số tiền gửi vốn lẫn lãi là: 5000000 1  0,007  1  0,0115  1  0,009   5747 478,359 n m Do n  , n  1;12  nên ta thử giá trị 2, 3, 4, 5, đến tìm m  Sử dụng MTCT ta tìm n   m  Do số tháng bạn Nam gửi 15 Câu 17 Chị Minh có 600 triệu đồng mang gửi tiết kiệm hai loại kì hạn khác theo thể thức lãi kép Chị gửi 200 triệu đồng theo kì hạn quý với lãi suất 2,1 % quý, 400 triệu đồng lại chị gửi theo kì hạn tháng với lãi suất 0,73 % tháng Sau gửi năm, chị rút nửa số tiền loại kì hạn theo quý gửi vào loại kì hạn theo tháng Hỏi sau năm kể từ gửi tiền lần đầu, chị Lan thu tất tiền lãi ( làm tròn đến hàng nghìn)? A 114957967 B 102957967 C 113957967 D 112957967 Hướng dẫn giải Số tiền 200 triệu đồng sau gửi tiết kiệm loại kì hạn quý sau năm 200.106 (1  0.021)4  217336648 đồng Facebook: https://www.facebook.com/phamminhtuan.317 10 Khóa luyện đề nâng cao 2020 Số tiền 400 triệu đồng sau gửi tiết kiệm loại kì hạn theo tháng sau năm 12  0,73  400.10    436481658 đồng 100   Tổng số tiền thu năm kể từ gửi tiền lần đầu: 12 217336648  217336648  0.73  (1  0.021)4    436481658    712957967 đồng 2 100    Câu 18 Vợ chồng anh A dự định lương vợ dùng chi trả sinh hoạt phí, lương anh A gửi tiết kiệm hàng tháng Biết đầu tháng anh tăng lương nhận mức lương triệu đồng/tháng sau năm lương anh tăng lên 10% so với năm trước iả sử dự định vợ chồng anh thực từ đầu tháng lãi suất ngân hàng ổn định 0,5 % tháng Tính số tiền vợ chồng anh A tiết kiệm sau 50 tháng A 341.570.000 B 336.674.000 C 384.968.000 D 379.782.000 Hướng dẫn giải Số tiền vợ chồng anh A tiết kiệm sau năm (24 tháng) là: 6.(1  0,5%).[(1  0,5%)24  1] (triệu đồng) T1  0,5% Số tiền hưởng lãi suất 26 tháng nên thành T1 (1  0,5%)26 Số tiền có nhờ tiết kiệm tiền lương anh A 24 tháng T2  6.(1  10%).(1  0,5%).[(1  0,5%)24  1] (hoặc dùng T2  T1 (1  10%) ) 0,5% Số tiền hưởng lãi suất tháng nên thành T2 (1  0,5%)2 Số tiền có nhờ tiết kiệm tiền lương anh A tháng (thứ 49+50) T3  6.(1  10%)2 (1  0,5%).[(1  0,5%)2  1] 0,5% Vậy tổng số tiền vợ chồng anh A tiết kiệm sau 50 tháng T1 (1  0,5%)26  T2 (1  0,5%)2  T3  336.674.000 đồng Câu 19 Một kỹ sư nhận lương khởi điểm 10000000 đồng/tháng Cứ sau hai năm lương tháng kỹ sư tăng thêm 10% so với mức lương Biết tháng lương kỹ sư bị tự động khấu trừ 3% vào quỹ bảo hiểm Tổng số tiền kỹ sư nhận sau năm làm việc sau trừ quỹ bảo hiểm A 794 400000 đồng B 770 568000 đồng C 748 428720 đồng D 766656000 đồng Hướng dẫn giải Facebook: https://www.facebook.com/phamminhtuan.317 11 Khóa luyện đề nâng cao 2020 Tổng tiền lương năm trừ bảo hiểm: T1  97%.10.106  24  232,8.106 đồng Tổng tiền lương năm trừ bảo hiểm: T2  97%.10.106 1  10%  24  256, 08.106 đồng Tổng tiền lương năm cuối trừ bảo hiểm: T3  97%.10.106 1  10%  24  281, 688.106 đồng Vậy tổng số tiền lương kỹ sư nhận sau năm làm việc T  T1  T2  T3  770 568 000 đồng Câu 20 Một người gửi tiết kiệm vào ngân hàng tỷ đồng với lãi suất 0, 5% / tháng (lãi tính theo tháng cộng dồn vào gốc) Kể từ lúc gửi sau tháng vào ngày ngân hàng tính lãi người rút 10 triệu đồng để chi tiêu (nếu tháng cuối không đủ 10 triệu rút hết) Hỏi kể từ ngày gửi người rút hết tiền tài khoản? (giả sử lãi suất không thay đổi q trình người gửi) A 136 tháng B 137 tháng C 138 tháng D 139 tháng Hướng dẫn giải Ta có số tiền người gửi ban đầu a  1000 triệu đồng, lãi suất hàng tháng m  0,005 ; số tiền người rút hàng tháng r  10 triệu đồng Sau tháng thứ (người chưa rút 10 triệu) người thu số tiền T1  a   m  Đầu tháng thứ hai người có số tiền a   m   r Cuối tháng thứ hai(người chưa rút 10 triệu) người có số tiền   T2  a   m   r   m   a   m   r   m  Đầu tháng thứ ba người có số tiền a   m   r   m   r Cuối tháng thứ ba (người chưa rút 10 triệu) người có số tiền T3  a   m   r 1  m   r 1  m  Cứ số tiền người có cuối tháng thứ n (người chưa rút 10 triệu) Tn  a 1  m  r 1  m  n n1  r 1  m n   r 1  m   a 1  m   Facebook: https://www.facebook.com/phamminhtuan.317 1  m  1  m  r n n m 12 Khóa luyện đề nâng cao 2020 Người rút hết tiền tài khồn Tn  r   Tn  10  a 1  m  1  m  1  m  10  r n n m thay số ta 1000.1,005n  10 1,005n  1,005  10  1,005 n   n  138,975 0,005 Vậy sau 139 tháng người rút hết tiền Câu 21 Năm 2005 thầy Hùng bắt đầu dạy trường THPT Diễn Châu từ đầu tháng 9.Với mức lương nhận tháng là: 3.300.000 đồng Cứ sau năm lương nhận tháng lại tăng 7% Vậy đến hết tháng năm 2043 thầy Hùng nhận tổng số tiền lương bao nhiêu? Biết suốt trình mức tăng lương khơng thay đổi A 2.303.521.000 đồng B 3.202.512.000 đồng C 3.512.303.000 đồng D 2.512.303.000 đồng Hướng dẫn giải Từ đầu tháng năm 2005 đến hết tháng năm 2008 Thầy Hùng nhận số tiền lương là: u1  3.300.000 x 36 Từ đầu tháng năm 2008 đến hết tháng năm 2011 Thầy Hùng nhận số tiền lương là: u2  3.300.000 x 1  7%  x 36 Từ đầu tháng năm 2011 đến hết tháng năm 2014 Thầy Hùng nhận số tiền lương là: u3  3.300.000 x 1  7%  x 36 Cứ : Từ đầu tháng năm 2038 đến hết tháng năm 2041 Thầy Hùng nhận u12  3.300.000 x 1  7%  x 36 11 số tiền lương là: Từ đầu tháng năm 2041 đến hết tháng năm 2043 Thầy Hùng nhận số tiền lương là: a  3.300.000 x 1  7%  x 24 12 Vậy tổng số tiền lương thầy Hùng nhận là:    7%  12 A  u1  u2   u12  a  3.300.000 x 36 x    7%   2.303.521.000 Facebook: https://www.facebook.com/phamminhtuan.317  3.300.000 x 1  7%  x 24 12 13 Khóa luyện đề nâng cao 2020 P/S: Số tiền lương nhận giáo viên khơng có thay đổi tương lai từ bắt đầu đến nghỉ hưu khoảng tầm 2, tỷ Một số nói lên nhiều điều Câu 22 Ông Minh có 200 triệu đồng gửi ngân hàng với kỳ hạn tháng với lãi suất 0,6% / tháng trả vào cuối kỳ Sau kỳ hạn, ông đến tất toán lãi gốc, rút triệu đồng để tiêu dùng, số tiền lại ơng gửi vào ngân hàng theo phương thức ( phương thức giao dịch lãi suất không thay đổi suốt q trình ơng gửi) Sau năm kể từ ngày gửi, ơng Minh tất tốn rút tồn số tiền nói ngân hàng, số tiền bao nhiêu? ( làm tròn đến nghìn đồng) A 169234 ( nghìn đồng) B 165288 ( nghìn đồng) C 169269 ( nghìn đồng) D 165269 ( nghìn đồng) Hướng dẫn giải Nếu cuối kì hạn, ơng Minh khơng rút triệu số tiền ơng có sau năm là: A  200000.(1  0,6%)12 nghìn đồng Đầu tháng thứ ông rút triệu đồng Nếu số tiền mà ông rút về, để nguyên để gửi đến hết tháng 12 ngân hàng phải trả cho ông gốc lãi ứng với triệu đồng B1  4000.(1  0,6%)11 nghìn đồng Do số tiền giả định A khơng lấy ngun vẹn mà bị trừ số tiền B1 Tương tự, với triệu đồng ông rút tháng thứ 3, 4, …,11 bị trừ tương ứng B2  4000.(1  0,6%)10 ; B3  4000.(1  0,6%)9 ; .; B11  4000(1  0,6%) Do vậy, số tiền ông Minh nhận tất toán lần cuối là: A  ( B1  B2   B11 )  200000.(1  0,6%)12  4000.[(1  0,6%)11  (1  0,6%)10 + .+(1+0,6%)] (1  0,6%)11  =200000.(1  0,6%)  4000.(1  0,6%)  169269 nghìn đồng 0,6% 12 Câu 23 Một anh sinh viên nhập học đại học vào thảng năm 2014 Bắt đầu từ tháng năm 2014, vào ngày mồng hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định 0,6% / tháng Lãi tháng trước cộng vào số nợ để tiếp tục tính lãi cho tháng ( lãi kép) Vào ngày mồng hàng tháng kể từ tháng năm 2016 sau anh khơng vay ngân hàng anh trả ngân hàng triệu đồng có việc làm thêm Hỏi sau kết thúc ngày anh trường (30/06/2018) anh nợ ngân hàng tiền (làm tròn đến hàng nghìn đồng)? A 49.024.000 B 47.401.000 C 46.641.000 Facebook: https://www.facebook.com/phamminhtuan.317 D 45.401.000 14 Khóa luyện đề nâng cao 2020 Hướng dẫn giải ) Đặt r  0,8%  0.008 ; A0  3.000.000 đồng +) Tính tổng số tiền anh sinh viên vay từ 01/ 09 / 2014 đến hết 30 / 08 / 2016 (24 tháng) Số tiền anh sinh viên vay sau tháng thứ là: A1  A0 (1  r ) Số tiền anh sinh viên vay sau tháng thứ hai là: A2  ( A1  A0 )(1  r)  A0 (1  r)2  A0 (1  r) Số tiền anh sinh viên vay sau tháng thứ ba là: A3  ( A2  A0 )(1  r)  A0 (1  r)3  A0 (1  r)2  A0 (1  r) …… Số tiền anh sinh viên vay sau tháng thứ 24 là: A24  A0 (1  r )24  A0 (1  r )23  A0 (1  r )22   A0 (1  r )  A0 (1  r ) (1  r )24   79.661.701 r Đặt T  79.661.701 đồng; T0  2.000.000 đồng +) Tính số tiền anh sinh viên nợ sau tháng, từ 01/ 09 / 2016 đến hết 30 / 06 / 2018 (22 tháng) Số tiền anh sinh viên nợ sau tháng thứ là: T1  (T  T0 )(1  r )  T (1  r )  T0 (1  r ) Số tiền anh sinh viên nợ sau tháng thứ hai là: T2  (T1  T0 )(1  r)  T(1  r)2  T0 (1  r)2  T0 (1  r ) Số tiền anhsinh viên nợ sau tháng thứ ba là: T3  (T2  T0 )(1  r)  T(1  r)3  T0 (1  r)3  T0 (1  r)2  T0 (1  r) …… Số tiền anh sinh viên nợ sau tháng thứ 22 là: T22  T(1  r)22  T0 (1  r)22  T0 (1  r)21   T0 (1  r) (1  r )22   T (1  r )  T0 (1  r )  46.641.000 (đồng) r 22 Câu 24 Năm 2019 em Thành trúng tuyển vào trường Đại học Dược Thành phố Hồ Chí Minh, Vì gia đình em khó khăn, để có tiền học năm nên vào đầu tháng 9/2019 em làm thủ tục vay vốn sinh viên 24.000.000 đồng/1 năm (vay vốn liên tục năm thủ tục vay vốn năm thực vào đầu tháng 9) với lãi suất Facebook: https://www.facebook.com/phamminhtuan.317 15 Khóa luyện đề nâng cao 2020 0,6%/tháng Sau hết năm em Thành trường kiếm việc làm nên em trả cho ngân hàng tháng a đồng iá trị a gần với số số để năm em Thành trả hết nợ vay ngân hàng A 3.500.000 đồng B 3.000.000 đồng C 2.770.000 đồng D 3.270.000 đồng Hướng dẫn giải Đặt q   r%  1,006 ọi Pn số tiền vay mà em Thành nợ ngân hàng sau n năm   n   Sau năm em Thành nợ: P1  24.q12 (triệu đồng)   Sau năm em Thành nợ: P2   P1  24  q12  24.q 24  24q12  24q12 q12  (triệu đồng) ………………………………………………………………………………………………   Sau năm em Thành nợ: P5   P4  24  q12  24q12 q 48  q 36  q 24  q12  (triệu đồng)  24q12  q60 (triệu đồng)  q12 ọi Qn số tiền mà em Thành nợ ngân hàng sau trả nợ n tháng n  Sau tháng em Thành nợ là: Q1  P5 q  a (triệu đồng) Sau tháng em Thành nợ là: Q2  Q1 q  a  P5 q2  a.q  a (triệu đồng) ……………………………………………………………………………………………… Sau n tháng em Thành nợ là: Qn  Qn1 q  a  P5 qn  a.qn1  a.qn2   a (triệu đồng)    P5 qn  a qn1  qn2   1  qn  P5 q  a 1 q n Để em Thành sau năm làm trả nợ Q60  hay P5 q 60  a  q 60 1 q 24q72   q   q60 60  q60  24q q  a a  2,976 (triệu đồng) 1 q  q12  q12 12 Câu 25 Cuối năm 2020, ANH TUẤN tốt nghiệp cử nhân ngành Công Nghệ Thông Tin Anh tâm trở thành lập trình viên chuyên nghiệp Vào đầu năm 2021 , ANH TUẤN đăng kí hợp đồng vào cơng ty thiết kế lập trình web với mức lương Facebook: https://www.facebook.com/phamminhtuan.317 16 Khóa luyện đề nâng cao 2020 khởi điểm 1500$ tháng Do nhu cầu sinh hoạt ANH TUẤN tiết kiệm 1000$ tháng (tháng 1/2021) tháng năm đầu Cứ năm lại tăng lương thêm 10% (tiền tiết kiệm cá nhân anh Tuấn tăng theo số % này) Sau 16 năm làm việc anh tiết kiệm X ($) Đến tháng năm 2037, anh không tiết kiệm trước mà dự định đầu tư mở CÔNG TY CỔ PHẦN TẬP ĐỒN TGROUP với tổng chi phí 450000$ Lấy khoảng X ($) đầu tư cho dự án thiếu (450000  X) $ dự án chưa hồn chỉnh Do để đáp ứng số tiền thiếu ANH TUẤN chọn cách gửi tiết kiệm với lãi suất 0.75% tháng với chu kì gửi sau: Tháng gửi 50,000,000 VNĐ, tháng kể từ tháng thứ hai trở tháng gửi nhiều tháng trước 5,000,000 VNĐ Hỏi ANH TUẤN gửi tháng đáp ứng chi phí (450000  X)$ để hoàn thành dự án Biết 1$  23000 VNĐ A 31 tháng B 32 tháng C 30 tháng Hướng dẫn giải D 29 tháng k   10%  1,1 Số tiền tiết kiệm sau năm đầu làm: A  1000.2.12  24000 $ Số tiền tiết kiệm sau năm làm: A  Ak  A   k  $   Số tiền tiết kiệm sau năm làm: A  Ak  Ak  A  k  k $ Số tiền tiết kiệm sau 16 năm làm:  k8  1 X  A 1  k  k  k  k  k  k  k   A    274461,3144 $  k 1  Chi phí cần đáp ứng: 450000  X  175538,6856 $  4,037,389,769 VNĐ Khi gửi tiết kiệm đầu tháng có số tiền: m  50000000 Đầu tháng có số tiền: m   0,75%   m  5000000 Đầu tháng có số tiền:  m   0,75%   m  5000000  1  0,75%   m  2.5000000 Đầu tháng n có số tiền: T  M   0,75%   m   n  1 5000000 Với M số tiền có đầu tháng thứ n 1 Gán D  , B  50000000 D hiểu tháng, B hiểu số tiền có đầu tháng D Nhập vào máy tính: Facebook: https://www.facebook.com/phamminhtuan.317 17 Khóa luyện đề nâng cao 2020 D  D  : B  B   0,75%   50000000   D  1 5000000 Rồi CALC D  ấn dấu “=” kết lớn 4,037,389,769 lấy D  31 Với việc bấm ta có kết là:  B  4,240,491,085 Vậy ANH TUẤN gửi 31 tháng Facebook: https://www.facebook.com/phamminhtuan.317 18 ... luyện đề nâng cao 2020 Người rút hết tiền tài khoàn Tn  r   Tn  10  a 1  m  1  m  1  m  10  r n n m thay số ta 1000.1,005n  10 1,005n  1, 005  10  1, 005 n   n  138,975 0, 005. .. giải Số tiền vốn lẫn lãi sau tháng gửi là: 100 1  0 ,05   110,25 (triệu đồng) Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 Vì người gửi thêm vào 20 triệu đồng... trình gửi 10 năm, lãi suất ngân hàng Facebook: https://www.facebook.com/phamminhtuan.317 Khóa luyện đề nâng cao 2020 khơng thay đổi, hỏi số tiền mà người thu (sau 10 năm) gần với số số sau (đơn vị:

Ngày đăng: 22/11/2019, 22:06

TỪ KHÓA LIÊN QUAN

w