Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 Ng y soà ạn: ………… Ng y già ảng: .………… Tiết: 1 Chương I: ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ. I. MỤC TIÊU: 1/ Kiến thức: + Nhớ lại cách tính đạo hàm của hàm số + Nắm được mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số. 2/ Kỹ năng: + Biết xét tính đơn điệu của một số hàm số đơn giản. + Lập bảng xét dấu của đạo hàm + Biết kết hợp nhiều kiến thức liên quan để giải toán. 3/ Tư duy và thái độ: + Thận trọng, chính xác. + Tự giác tích cực học tập + Biết phân biệt rõ các khái niệm cơ bản và vận dụng trong từng trường hợp cụ thể II. CHUẨN BỊ. + GV: Giáo án, bảng phụ. + HS: SGK, đọc trước bài học. III. PHƯƠNG PHÁP. Thông qua các hoạt động tương tác giữa trò – trò, thầy – trò để lĩnh hội kiến thức, kĩ năng theo mục tiêu bài học. IV. TIẾN TRÌNH DẠY HỌC. 1/ Ổn định lớp: 2/ Kiểm tra bài cũ: Giới thiệu tổng quan chương trình Giải tích 12 chuẩn (5') 3/ Bài mới: HĐ của GV HĐ của HS Ghi bảng Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm số Gv treo bảng phụ có hình vẽ H1 và H2 − SGK trg 4. Phát vấn: + Các em hãy chỉ ra các khoảng tăng, giảm của + Ôn tập lại kiến thức cũ thông qua việc trả lời các câu hỏi phát vấn của giáo viên. I. Tính đơn điệu của hàm số: 1. Nhắc lại định nghĩa tính đơn điệu của hàm số. (SGK) + Đồ thị của hàm số đồng biến trên K là một đường đi Gi¸o viªn:Lª V¨n Trêng y Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 các hàm số, trên các đoạn đã cho? + Nhắc lại định nghĩa tính đơn điệu của hàm số? + Nhắc lại phương pháp xét tính đơn điệu của hàm số đã học ở lớp dưới? + Nêu lên mối liên hệ giữa đồ thị của hàm số và tính đơn điệu của hàm số? + Ghi nhớ kiến thức. lên từ trái sang phải. + Đồ thị của hàm số nghịch biến trên K là một đường đi xuống từ trái sang phải. Hoạt động 2: Tìm hiểu mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm + Ra đề bài tập: (Bảng phụ) Cho các hàm số sau: y = 2x − 1 và y = x 2 − 2x. + Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng. + Phân lớp thành hai nhóm, mỗi nhóm giải một câu. + Gọi hai đại diện lên trình bày lời giải lên bảng + Có nhận xét gì về mối liên hệ giữa tính đơn + Giải bài tập theo yêu cầu của giáo viên. + Hai học sinh đại diện lên bảng trình bày lời giải. + Rút ra mối liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm của hàm số. I. Tính đơn điệu của hàm số: 2. Tính đơn điệu và dấu của đạo hàm: * Định lí 1: (SGK) Cho hàm số y = f(x) có đạo hàm trên K * Nếu f'(x) > 0 x K∀ ∈ thì hàm số y = f(x) đồng biến trên K. * Nếu f'(x) < 0 x K∀ ∈ thì hàm số y = f(x) nghịch biến trên K. Gi¸o viªn:Lª V¨n Trêng x O x O y Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 điệu và dấu của đạo hàm của hai hàm số trên? + Rút ra nhận xét chung và cho HS lĩnh hội ĐL 1 trang 6. Hoạt động 3: Giải bài tập củng cố định lí. + Giáo viên ra bài tập 1. + GV hướng dẫn học sinh lập BBT. + Gọi 1 hs lên trình bày lời giải. + Điều chỉnh lời giải cho hoàn chỉnh. + Các Hs làm bài tập được giao theo hướng dẫn của giáo viên. + Một hs lên bảng trình bày lời giải. + Ghi nhận lời giải hoàn chỉnh. Bài tập 1: Tìm các khoảng đồng biến, nghịch biến của hàm số: y = x 3 − 3x + 1. Giải: + TXĐ: D = R. + y' = 3x 2 − 3. y' = 0 ⇔ x = 1 hoặc x = −1. + BBT: x − ∞ −1 1 + ∞ y' + 0 − 0 + y + Kết luận: 4/ Củng cố: Giáo viên nhấn mạnh lại: +Nhớ lại cách tính đạo hàm của hàm số + Nắm được mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số. 5/ Hướng dẫn học bài ở nhà và ra bài tập về nhà: + Nắm vững qui tắc tính đạo hàm của hàm số + Học thuộc định lí + Đọc trước phần còn lại của bài V. Tự rút kinh nghiệm …………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………… ……………………………………………………………. Gi¸o viªn:Lª V¨n Trêng Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 Ng y soà ạn: 1`………… Ng y già ảng: .………… Tiết: 2 Bài 1: SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ. I. MỤC TIÊU: 1/ Kiến thức: + Tính đơn điệu của hàm số, quy tắc xét tính đơn điệu của hàm số 2/ Kỹ năng: + Biết xét tính đơn điệu của một số hàm số + Lập bảng xét dấu của đạo hàm + Liên hệ với một số hàm số đã học 3/ Tư duy và thái độ: + Thận trọng, chính xác. + Tự giác tích cực học tập + Biết phân biệt rõ các khái niệm cơ bản và vận dụng trong từng trường hợp cụ thể II. CHUẨN BỊ. + GV: Giáo án, bảng phụ. + HS: SGK, đọc trước bài học. III. PHƯƠNG PHÁP. Thông qua các hoạt động tương tác giữa trò – trò, thầy – trò để lĩnh hội kiến thức, kĩ năng theo mục tiêu bài học. IV. TIẾN TRÌNH DẠY HỌC. 1/ Ổn định lớp: 2/ Kiểm tra bài cũ: ? Nêu định nghiã hàm số đồng biến, nghịch biến 3/ Bài mới: Thời gian HĐ của GV HĐ của HS Ghi bảng Tiết 2 10' Hoạt động 1: Mở rộng định lí về mối liên hệ giữa dấu của đạo hàm và tính đơn điệu của hàm số + GV nêu định lí mở rộng và chú ý cho hs là dấu "=" xảy ra tại một số hữu hạn điểm thuộc K. + Ra ví dụ. + Phát vấn kết quả và + Ghi nhận kiến thức. + Giải ví dụ. + Trình bày kết quả và giải thích. I. Tính đơn điệu của hàm số: 2. Tính đơn điệu và dấu của đạo hàm: * Định lí: (SGK) * Chú ý: (SGK) + Ví dụ: Xét tính đơn điệu của hàm số y = x 3 . Gi¸o viªn:Lª V¨n Trêng Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 giải thích. ĐS: Hàm số luôn đồng biến. 7' Hoạt động 2: Tiếp cận quy tắc xét tính đơn điệu của hàm số + Từ các ví dụ trên, hãy rút ra quy tắc xét tính đơn điệu của hàm số? + Nhấn mạnh các điểm cần lưu ý. + Tham khảo SGK để rút ra quy tắc. + Ghi nhận kiến thức II. Quy tắc xét tính đơn điệu của hàm số. 1. Quy tắc: (SGK) + Lưu ý: Việc tìm các khoảng đồng biến, nghịch biến của hàm số còn được gọi là xét chiều biến thiên của hàm số đó. 13' Hoạt động 3: Áp dụng quy tắc để giải một số bài tập liên quan đến tính đơn điệu của hàm số + Ra đề bài tập. + Quan sát và hướng dẫn (nếu cần) học sinh giải bài tập. + Gọi học sinh trình bày lời giải lên bảng. + Hoàn chỉnh lời giải cho học sinh. + Giải bài tập theo hướng dẫn của giáo viên. + Trình bày lời giải lên bảng. + Ghi nhận lời giải hoàn chỉnh. Bài tập 2: Xét tính đơn điệu của hàm số sau: 1 2 x y x − = + ĐS: Hàm số đồng biến trên các khoảng ( ) ; 2−∞ − và ( ) 2;− +∞ Bài tập 3: Chứng minh rằng: tanx > x với mọi x thuộc khoảng 0; 2 π ÷ HD: Xét tính đơn điệu của hàm số y = tanx − x trên khoảng 0; 2 π ÷ . từ đó rút ra bđt cần chứng minh. 5' Hoạt động 4: Tổng kết + Gv tổng kết lại các vấn đề trọng tâm của bài học Ghi nhận kiến thức * Qua bài học học sinh cần nắm được các vấn đề sau: + Mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số. + Quy tắc xét tính đơn điệu của hàm số. + Ứng dụng để chứng minh BĐT. 4/ Củng cố: Cho hàm số f(x) = 3x 1 1 x + − và các mệnh đề sau: (I) : Trên khoảng (2; 3) hàm số f đồng biến. Gi¸o viªn:Lª V¨n Trêng Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 (II): Trên các khoảng (- ∞ ; 1) và (1; + ∞ ) đồ thị của hàm số f đi lên từ trái qua phải. (III): f(x) > f(2) với mọi x thuộc khoảng (2; + ∞ ). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? A. 1 B. 3 C. 2 D. 0 HS trả lời đáp án. GV nhận xét. 5/ Hướng dẫn học bài ở nhà và ra bài tập về nhà: + Nắm vững qui tắc xét tính đơn điệu của hàm số và ứng dụng. + Giải các bài tập ở sách giáo khoa. V. Tự rút kinh nghiệm …………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………… ……………………………………………………………. Ng y soà ạn: ……… Ng y già ảng: .……… Tiết: 4 §2. CỰC TRỊ CỦA HÀM SỐ I. Mục tiêu: 1. Về kiến thức: + Biết các khái niệm cực đại, cực tiểu; biết phân biệt các khấi niệm lớn nhất, nhỏ nhất. + Biết các điều kiện đủ để hàm số có cực trị. 2. Về kĩ năng: + Sử dụng thành thạo các điều kiện đủ để tìm cực trị của hàm số. 3. Về tư duy và thái độ: + Hiểu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm. + Cẩn thận, chính xác; Tích cực hoạt động; rèn luyện tư duy trực quan, tương tự. II. Chuẩn bị: 1. Giáo viên: Giáo án, bảng phụ… 2. Học sinh: Nắm kiến thức bài cũ, nghiên cứu bài mới, đồ dùng học tập. III. Phương pháp : Kết hợp nhiều phương pháp, trong đó vấn đáp, gợi mở là phương pháp chủ đạo. IV. Tiến trình: 1. Ổn định tổ chức (1’): Kiểm tra tác phong, sỉ số, thái độ học tập… 2. Kiểm tra bài cũ (5’): ? Xét sự đồng biến, nghịch bến của hàm số: 3 2 1 2 3 3 y x x x= − + 3. Bài mới: Hoạt động 1: Khái niệm cực trị và điều kiện đủ để hàm số có cực trị. Gi¸o viªn:Lª V¨n Trêng Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 Gi¸o viªn:Lª V¨n Trêng TG HĐGV HĐHS GB 10’ 10’ 8’ 7’ + Treo bảng phụ (H8 tr 13 SGK) và giới thiệu đây là đồ thị của hàm số trên. H1 Dựa vào đồ thị, hãy chỉ ra các điểm tại đó hàm số có giá trị lớn nhất trên khoảng 1 3 ; 2 2 ÷ ? H2 Dựa vào đồ thị, hãy chỉ ra các điểm tại đó hàm số có giá trị nhỏ nhất trên khoảng 3 ;4 2 ÷ ? + Cho HS khác nhận xét sau đó GV chính xác hoá câu trả lời và giới thiệu điểm đó là cực đại (cực tiểu). + Cho học sinh phát biểu nội dung định nghĩa ở SGK, đồng thời GV giới thiệu chú ý 1. và 2. + Từ H8, GV kẻ tiếp tuyến tại các điểm cực trị và dẫn dắt đến chú ý 3. và nhấn mạnh: nếu 0 '( ) 0f x ≠ thì 0 x không phải là điểm cực trị. + Yêu cầu HS xem lại đồ thị ở bảng phụ và bảng biến thiên ở phần KTBC (Khi đã được chính xác hoá). H1 Nêu mối liên hệ giữa tồn tại cực trị và dấu của đạo hàm? + Cho HS nhận xét và GV chính xác hoá kiến thức, từ đó dẫn dắt đến nội dung định lí 1 SGK. + Dùng phương pháp vấn đáp cùng với HS giải vd2 như SGK. + Cho HS nghiên cứu vd3 rồi lên bảng trình bày. + Cho HS khác nhận xét và GV chính xác hoá lời giải. + Trả lời. + Nhận xét. + Phát biểu. + Lắng nghe. + Trả lời. + Nhận xét. §2 CỰC TRỊ CỦA HÀM SỐ I. Khái niệm cực đại, cực tiểu Định nghĩa (SGK) Chú ý (SGK) II. Điều kiện đủ để hàm số có cực trị Định lí 1 (SGK) x x 0 -h x 0 x 0 +h f’(x) + - f(x) f CD x x 0 -h x 0 x 0 +h f’(x) - + f(x) f CT Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 4. Củng cố toàn bài(3’): + Cho học sinh giải bài tập trắc nghiệm: Số điểm cực trị của hàm số: 4 2 2 1y x x= + − là: A. 0 B. 1 C. 2 D. 3 + Nêu mục tiêu của tiết. 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà (1’): HS về nhà xem kĩ lại phần đã học, xem trước bài mới và làm các bài tập: 1, 3-6 tr18 SGK. V. Phụ lục: Bảng phụ: x y 4 3 3 2 1 2 3 4 O 1 2 V. Tự rút kinh nghiệm: …………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………… ……………………………………………………………. Ngày soạn: ………… Ngày giảng:…………. Tiết: 5 CỰC TRỊ CỦA HÀM SỐ I-Mục tiêu: 1/ Về kiến thức: - Nắm vững định lí 1 và định lí 2 - Phát biểu được các bước để tìm cực trị của hàm số (quy tắc I và quy tắc II) 2/ Về kỹ năng: Vận dụng được quy tắc I và quy tắc II để tìm cực trị của hàm số 3/ Về tư duy và thái độ: - Áp dụng quy tắc I và II cho từng trường hợp - Biết quy lạ về quen - Tích cực học tập, chủ động tham gia các hoạt động II-Chuẩn bị của GV và HS: - GV: giáo án, bảng phụ - HS: học bài cũ và xem trước bài mới ở nhà III-Phương pháp giảng dạy: vấn đáp, gợi mở, hoạt động nhóm Gi¸o viªn:Lª V¨n Trêng Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 IV-Tiến trình bài học: 1. Ổn định lớp: (1’) 2. Kiểm tra bài cũ: Hoạt động của GV Hoạt động của HS Ghi bảng +Treo bảng phụ có ghi câu hỏi +Gọi HS lên bảng trả lời +Nhận xét, bổ sung thêm +HS lên bảng trả lời 1/Hãy nêu định lí 1 2/Áp dụng định lí 1, tìm các điểm cực trị của hàm số sau: x xy 1 += Giải: Tập xác định: D = R\{0} 10' 11 1' 2 2 2 ±=⇔= − =−= xy x x x y BBT: x -∞ -1 0 1 +∞ y’ + 0 - - 0 + y -2 +∞ +∞ -∞ -∞ 2 Từ BBT suy ra x = -1 là điểm cực đại của hàm số và x = 1 là điểm cực tiểu của hàm số 3. Bài mới: *Hoạt động 1: Dẫn dắt khái niệm Hoạt động của GV Hoạt động của HS Ghi bảng +Yêu cầu HS nêu các bước tìm cực trị của hàm số từ định lí 1 +GV treo bảng phụ ghi quy tắc I +Yêu cầu HS tính thêm y”(-1), y”(1) ở câu 2 trên +Phát vấn: Quan hệ giữa đạo hàm cấp hai với cực trị của hàm số? +GV thuyết trình và treo bảng phụ ghi định lí 2, quy tắc II +HS trả lời +Tính: y” = 3 2 x y”(-1) = -2 < 0 y”(1) = 2 >0 III-Quy tắc tìm cực trị: *Quy tắc I: sgk/trang 16 *Định lí 2: sgk/trang 16 *Quy tắc II: sgk/trang 17 *Hoạt động 2: Luyện tập, củng cố Gi¸o viªn:Lª V¨n Trêng Trêng thpt trÇn nh©n t«ng GIÁO ÁN GIẢI TÍCH 12 Hoạt động của GV Hoạt động của HS Ghi bảng +Yêu cầu HS vận dụng quy tắc II để tìm cực trị của hàm số +Phát vấn: Khi nào nên dùng quy tắc I, khi nào nên dùng quy tắc II ? +Đối với hàm số không có đạo hàm cấp 1 (và do đó không có đạo hàm cấp 2) thì không thể dùng quy tắc II. Riêng đối với hàm số lượng giác nên sử dụng quy tắc II để tìm các cực trị +HS giải +HS trả lời *Ví dụ 1: Tìm các điểm cực trị của hàm số: f(x) = x 4 – 2x 2 + 1 Giải: Tập xác định của hàm số: D = R f’(x) = 4x 3 – 4x = 4x(x 2 – 1) f’(x) = 0 1 ±=⇔ x ; x = 0 f”(x) = 12x 2 - 4 f”( ± 1) = 8 >0 ⇒ x = -1 và x = 1 là hai điểm cực tiểu f”(0) = -4 < 0 ⇒ x = 0 là điểm cực đại Kết luận: f(x) đạt cực tiểu tại x = -1 và x = 1; f CT = f( ± 1) = 0 f(x) đạt cực đại tại x = 0; f CĐ = f(0) = 1 *Hoạt động 3: Luyện tập, củng cố Hoạt động của GV Hoạt động của HS Ghi bảng +Yêu cầu HS hoạt động nhóm. Nhóm nào giải xong trước lên bảng trình bày lời giải +HS thực hiện hoạt động nhóm *Ví dụ 2: Tìm các điểm cực trị của hàm số f(x) = x – sin2x Giải: Tập xác định : D = R f’(x) = 1 – 2cos2x f’(x) = 0 ⇔ cos2x = +−= += ⇔ π π π π kx kx 6 6 2 1 (k Ζ∈ ) f”(x) = 4sin2x f”( π π k + 6 ) = 2 3 > 0 Gi¸o viªn:Lª V¨n Trêng [...]... ng 2: Cho hc sinh tip cn vi dng tim cn mt bờn T.gian Hot ng ca giỏo viờn 12 - Phỏt phiu hc tp 2 Hot ng ca hc sinh - Hc sinh tho lun nhúm Ghi bng Phiu hc tp 2 Tỡm tim cn ca th cỏc hs: 1) y = - Nhn xột, ỏnh giỏ - i din nhúm lờn bng trỡnh by bi gii 2) y = 1 x x +1 x 1 Hot ng 3: Cho hc sinh tip cn vi dng bi tp cú nhiu tim cn T.gian Hot ng ca giỏo viờn 12 - Phỏt phiu hc tp 3 Hot ng ca hc sinh - Hc sinh... TCH 12 8 Chun b ca hc sinh: SGK, Xem ni dung kin thc ca bi hc v cỏc ni dung kin thc cú liờn quan n bi hc nh : bi toỏn tớnh gii hn hs XII PHNG PHP : Gi m, vn ỏp, gii quyt vn XIII TIN TRèNH DY HC: 7 n nh lp: 8 Bi c (5 phỳt): Ch o h s y = 2 x T í nh lim y ; lim y ;lim y ;lim y x+ x x1 x1+ x 1 GV nhn xột, ỏnh giỏ 9 Bi mi: Hot ng 1: Tip cn nh ngha TCN Hot ng ca giỏo viờn Hot ng ca hc sinh 2 x - HS quan... tho cỏc quy tc tỡm cc tr ca hm s +S dng thnh tho cỏc iu kin v chý ý 3 gii cỏc bi toỏn liờn quan n cc tr ca hm s 3/ T duy: + Bit chuyn hoỏ qua li gia kin thc t trc quan (hỡnh v) v kin thc t suy lun logic 4/ Thỏi : Tớch cc, ch ng tham gia hot ng Giáo viên:Lê Văn Trờng Trờng thpt trần nhân tông GIO N GII TCH 12 II CHUN B + GV: Giỏo ỏn,cõu hi trc,phiu hc tp v cỏc dng c dy hc + HS: Lm bi tp nh III PHNG... nhn xột V bng tng kt cỏc dng ca th hm s bc 3 Giáo viên:Lê Văn Trờng Trờng thpt trần nhân tông GIO N GII TCH 12 4 Cng c: Gv nhc li cỏc bc KS VT hm s v dng th hm s bc 3 5 Dn dũ: - Hc thuc s kho sỏt hm s - Hng dn hs v nh lm bi tp 1 trang 43.(5) V T rỳt kinh nghim: Ngày soạn : Ngy ging: Tiết: 12 KHO ST hàm trùng phơng I/ Mục tiêu : 1/ Kiến thức : Học sinh nắm đợc các bớc khảo sát hàm trùng phơng ,... chẵn Nhận oy làm trục đối xứng x ĩm y' + y -1 - + 0 + 0 - 0 + -3 + -4 -4 2 -5 *GV: nhấn mạnh hình dạng của đồ thị trong trờng hợp : a>0;a . thiệu tổng quan chương trình Giải tích 12 chuẩn (5') 3/ Bài mới: HĐ của GV HĐ của HS Ghi bảng Hoạt động 1: Nhắc lại các kiến thức liên quan tới tính. 2 >0 III-Quy tắc tìm cực trị: *Quy tắc I: sgk/trang 16 *Định lí 2: sgk/trang 16 *Quy tắc II: sgk/trang 17 *Hoạt động 2: Luyện tập, củng cố Gi¸o viªn:Lª