Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 65 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
65
Dung lượng
1,06 MB
Nội dung
ĐẠI HỌC FPT CẦN THƠ Chapter INTEGRATION (Page 5-106, Calculus Volume 1,2) Dr Tran Quoc Duy Email: duytq4@fpt.edu.vn Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Contents 1.1 Approximating Areas 1.2 The Define Integral 1.3 The Fundamental Theorem of Calculus 1.4 Integration Formulas and the Net Change Theorem 1.5 Substitution Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ INTEGRATION 1.1 Approximating Areas In this section, we will learn that: We get the same special type of limit in trying to find the area under a curve Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM We begin by attempting to solve the area problem: Find the area of the region S that lies under the curve y = f(x) from a to b Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM Example Suppose we divide S into four strips S1, S2, S3, and S4 by drawing the vertical lines x = ẳ, x = ẵ, and x = ắ Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM Example The heights of these rectangles are the values of the function f(x) = x2 at the right endpoints of the subintervals [0, ẳ],[ẳ, ẵ], [ẵ, ắ], and [ắ, 1] Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM Example Each rectangle has width ¼ and the heights are (ẳ)2, (ẵ)2, (ắ)2, and 12 R4 = ( ) + ( ) 2 + ( ) + 14 12 = 15 32 = 0.46875 Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM Example Here, the heights are the values of f at the left endpoints of the subintervals L4 = + ( 4 ) + ( ) 2 + ( ) = 327 = 0.21875 Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM Example The figure shows what happens when we divide the region S into eight strips of equal width 0.2734375 < A < 0.3984375 Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ AREA PROBLEM Example Rn is the sum of the areas of the n rectangles – Each rectangle has width 1/n and the heights are the values of the function f(x) = x2 at the points 1/n, 2/n, 3/n, …, n/n – That is, the heights are (1/n)2, (2/n)2, (3/n)2, …, (n/n)2 Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ NET CHANGE THEOREM Example b So, from Equation 3, the distance traveled is: ò 4 v(t ) dt = ò [-v(t )] dt + ò v(t ) dt 3 = ò (-t + t + 6) dt + ò (t - t - 6) dt 3 é t t ù ét t ù = ê - + + 6t ú + ê - - 6t ú ë û1 ë û3 61 = » 10.17 m Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Example Suppose that the animal population is increasing at a rate f(t)=3t-1 ( t measured in years) How much does the animals increase between the third and the seven years? Suppose the acceleration function and initial velocity are a(t)=t+3 (m/s2), v(0)=5 (m/s).Find the velocity at time t and the distance traveled when 0