Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 24 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
24
Dung lượng
602,8 KB
Nội dung
ĐẠI HỌC FPT CẦN THƠ Chapter Power Series (Page 531-581, Calculus Volume 2) Dr Tran Quoc Duy Email: duytq4@fpt.edu.vn Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Topics : 6.1 Power series and Functions 6.3 Taylor and Maclaurin series Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ k c x Power series is a series of the form: k k =0 where x is a variable, and ck are constants called the coefficients of the series Power series centered at a is a series of the form: k c ( x − a ) k k =0 Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 6.1 Power series and Functions Power series Example • Geometric series: k cx k =0 k c ( x − a ) • The series k is not called a power series if p< k =p Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 6.1 Power series and Functions Power series Theorem Let k c ( x − a ) be a power series centered at a There are k k =0 only three possibilities: • The series converges only when x= a • The series converges for all x • There is a positive number R such that the series converges if |x-a|R Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 6.1 Power series and Functions Power series Definition The radius of convergence of the power series k c ( x − a ) k k =0 is the number R such that the series converges for |x – a| < R and diverges for |x – a| > R Interval of convergence of the power series is the interval that consists of all x for which the series converges Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Example Find the radius and interval of convergence of the series xk k =1 k ck +1 k +1 lim = lim = 1→ R = k → c k → k k → the series converges when −1