Journal of Science and Arts Year 12, No 3(20), pp 291-296, 2012 ORIGINAL PAPER SOME GEOMETRIC INEQUALITIES OF RADON-ERDÖS-MORDELL TYPE DUMITRU M BĂTINEŢU-GIURGIU , NECULAI STANCIU _ Manuscript received: 11.07.2012; Accepted paper: 02.09.2012; Published online: 15.09.2012 Abstract Some Erdös-Mordell type inequalities for general convex poligons are presented.The main tool in the proofs is the Radon inequality Keywords: Erdös-Mordell type inequality, Radon inequality, convex polygon INTRODUCTION The purpose of this article is to establish some geometric inequalities (other than [2] ) on Erdös-Mordell - type , in convex polygons, used J Radon’s inequality (see for example[1]) n n k 1 k 1 Let a, b, c, d , xk , yk R , k 1, n and X n xk , Yn yk * Theorem (A generalization of J Radon’s inequality) If m, p, q, s R , r 1, such that cYns d max yks , k 1, n , then: 1 k n aX bx x cY dy y p n n s n k 1 q m 1 r ( m 1) k k s m m k k an X bX cn d Y q r m 1 n pr n q m s m ( s 1) n n ( m 1)( q r 1) ms (1) Proof: We denoted uk aX bx p n q k x , v cY r k s n k dy s k n y , k 1, n , V v k n k 1 k and the LHS of (1) becomes: m 1 m 1 n v u Vn k k k 1 Vn v k * * m 1 Since the function f : R R , f ( x) x is convex on R* , we use Jensen’s inequality and we obtain that: n uk u km 1 v k m k 1 v k k 1 vk n vk u k n f k 1 Vn v k k 1 Therefore, n v u n f k k Vn v k k 1 n uk u f k k 1 m 1 Vn Vn m 1 v k k 1 Vn n uk vk m 1 n uk k 1 m 1 Vn m 1 “Matei Basarab” National College, Bucharest, Romania “George Emil Palade” General School, Buzau, Romania E-mail: stanciuneculai@yahoo.com ISSN: 1844 – 9581 Mathematics Section Some geometric inequalities … 292 Dumitru Batinetu-Giurgiu, Neculai Stanciu n uk Vn k 1 m 1 Vn u km 1 m k 1 v k n aX bx x cY dy y q m 1 r ( m 1) k k s m m k k p n n s n k 1 m 1 n uk k 1 m Vn m 1 m 1 n aX np bx kq x kr k 1 m n cYns dy ks y k k 1 m 1 m 1 m 1 n n n n n aX np x kr bx kq r aX np x kr b x kq r aX np x kr b x kq r k 1 k 1 k 1 k 1 k m m m n n n n s s 1 cYns y k dy ks 1 cYn y k d y ks 1 cYn d y ks 1 k 1 k 1 k 1 k 1 * r qr s1 Because the functions g , h, k : R R , g ( x) x , h( x) x , k ( y ) y are convex on R* , also by Jensen’s inequality we have: n X nr X nr 1 n r ( ) x g x ng x n k k k nr n r 1 , k 1 k 1 n k 1 n n X nq r X nq r 1 n qr x k h( x k ) nh x k n q r q r 1 n n k 1 k 1 n k 1 , s 1 s 1 n n n Y Y 1 y is 1 k ( y i ) nk y i n ns 1 n s n n i 1 i 1 n i 1 n Then, we deduce that: aX bx x cY dy y p n n s n k 1 an X bX cn d Y q r m 1 n pr n q s m m ( s 1) n q m 1 r ( m 1) k k s m m k k n ms n ( m 1)( q r 1) X np r X qr a r 1 b q n r 1 n n m s 1 dYns 1 cYn s n an X bX cn d Y q r m 1 n pr n q s m 1 m m ( s 1) n n ( m 1)( q r 1) ms , and we are done ■ Observation 1.1 If p q s , then (1) becomes: a b m1 xkr ( m 1) c d m y km k 1 n a b m1 X nr ( m1) ( m 1)( r 1) m m n c d Yn x kr ( m 1) X nr ( m 1) y km Ynm n ( m 1)( r 1) k 1 n (1) If we consider r = 1, then by (1’) we obtain: n x km 1 X nm 1 m m Yn k 1 y k (R) i.e that is just the inequality of J Radon, with equality if and only if there exists t R such * that xk tyk , k 1, n www.josa.ro Mathematics Section Some geometric inequalities … Dumitru Batinetu-Giurgiu, Neculai Stanciu 293 Observation 1.2 If m = 1, then (1) becomes: aX cY bx kq x k2 r an q X np r bX nq r 2( q r 1) s s s s s 1 cn d Yn n k 1 n dy k y k If we take p q s 0, r , then by (1”) we obtain: n x k2 X n2 Yn k 1 y k n p n (1) (B) but that is just the inequality of H Bergström Next, we consider A1A2…An (n≥3), a convex polygon and for any point M from inside the polygon we use the notations: xk = MAk, yk the distance from M to the line AkAk+1, ak the length of the side [AkAk+1] of the polygon k 1, n , 2p is the perimeter of the polygon, S is the area of the given polygon and An+1≡A1 and Theorem If A1A2…An (n≥3) is a convex polygon where we use the above notations a, b, c, d R* m, p, q, s R , r 1, , such that cYns d max y ks , k 1, n 1 k n then: aX bx x cY dy y p n n s n k 1 q m 1 r ( m 1) k k s m m k k an X bX cn d X q r m 1 n pr n q m s m ( s 1) n , sec n m ( s 1) n ( m 1)( q r 1) ms (2) Proof: By L.Fejes Tóth’s inequality (see e.g [2]) n n y Y cos x k cos X n k n n k 1 n , k 1 and by (1) we deduce what we have to show ■ Observation 2.1 If we put p =q, then by (2) we obtain: aX bx x cY dy y n p n k 1 s n p m 1 r ( m 1) k k s m m k k an b X cn d X an b X cn d n m 1 p m s m 1 p s m ( p r )( m 1) n m ( s 1) n sec n m ( p r s 1) p r n ( m 1)( p r 1) ms m ( s 1) sec n n ( m 1)( q r 1) ms m ( s 1) (2’) If we consider p = s = 0, then by (2’) we deduce that: m x kr ( m 1) X nm ( r 1) r m y k 1 k n sec n ( m 1)( r 1) n (2”) If we take r = then by (2”) yields: m n x km 1 X n sec m n k 1 y k (2”’) Remark 2.1 Putting m =1 in (2”’) we obtain the relation (18) from [2] ISSN: 1844 – 9581 Mathematics Section Some geometric inequalities … 294 Dumitru Batinetu-Giurgiu, Neculai Stanciu Theorem If we have the notations presented above, then n x km 1 X nm 1 , m R , p N * 1 m 1 m m p p Y k 1 ( y k y k 1 y k p 1 ) n (3) where yn j y j , j 0, p 1 Proof: By AM-GM inequality we have: p 1 p 1 p y y k j , k 1, n k j p j 0 j 0 , which yields n k 1 x km 1 x km 1 n p 1 p yk j j 1 m p k 1 p 1 yk j j 0 m , then by (R) xkm 1 n k 1 p p 1 yk j j 1 m p X nm 1 X nm 1 , p mYnm p m 1Ynm which completes the proof ■ Observation 3.1 By (3) and L Fejes Tóth’s inequality we deduce that: m n x km 1 X nm 1 Xn sec m m n p m 1 k 1 m 1 m p 1 p X n cos p 2 yk j j 1 (3’) which is a Radon-Erdös-Mordel type inequality If we consider m = 1, then by (3’) we obtain that: n x k2 X n sec p 1 n k 1 p yk j j 0 (3”) For the same convex polygon A1A2…An (n≥3), An+1≡A1 and for any point M of space which is not on the line AkAk+1, we denoted by yk(M) the distance from M to line AkAk+1, n sk ( M ) area Ak MAk 1 , k 1, n and S ( M ) sk ( M ) k 1 Theorem If M and N are the points in space which is not on the line AkAk+1, k 1, n , then: 1 a k m y k ( N ) m k 1 yk (M ) n www.josa.ro p m 1 S ( M ) m S ( N ) m S ( M ) S ( N ) m (4) Mathematics Section Some geometric inequalities … Dumitru Batinetu-Giurgiu, Neculai Stanciu Proof: We have: n n m 1 1 1 ak U n a k m m m y k ( N ) k 1 a k y k ( M ) a k y k ( N ) m k 1 y k (M ) n a m 1 1 k m m m k 1 S k (M ) S k ( N ) , where we apply (R) and yields m 1 m 1 n n a a k k k 1 k 1 Un m m m m n Sk (N ) S k (M ) k 1 k 1 m 1 2 p p m1 S ( M ) m S ( N ) m m S ( M ) m S ( N ) n S ( M ) S ( N ) m = , and this is what we had to prove 295 ■ Observation 4.1 If M is a point inside of the polygon A1A2…An and N is a point outside of the plane (A1A2…An), then the polygon is the base of the pyramid with the vertex N, so that (4) becomes: n p m 1 S m S lm 1 a k m m S S l m y M y N ( ) ( ) k 1 k k (4’) where S is the area of the polygon with the perimeter 2p, and Sl is the lateral area of the pyramid with vertex N and base the polygon A1A2…An If M and N are inside of the polygon then S(M) = S(N) = S, and (4’) becomes: n p m 1 S m p m 1 1 a k m m 2m S Sm ( ) ( ) y M y N k 1 k k (4”) If in addition M ≡ N, then we obtain that: n n ak ak p m 1 p m 1 2 m m Sm Sm k 1 y k ( M ) k 1 y k ( M ) (4”’) Remark 4.1 Taking m =1, then by (4”’) we deduce that: n ak p2 S , k 1 y k ( M ) i.e the problem 10876 , proposed by D Buşneag in G.M.-B nr 1/1971, pp.35 For the convex polygon A1A2…An (n≥3), An+1≡A1 and M a point in space which is not on the line AkAk+1, k 1, n , we denote by mk Ak MAk 1 , k 1, n , the measure in radians of the angle Ak MAk 1 , k 1, n Theorem If A1A2…An (n≥3) is a convex polygon as above, and M is a point in space which is not on the line AkAk+1, k 1, n , with mk 0, , k 1, n , then: 2 ISSN: 1844 – 9581 Mathematics Section Some geometric inequalities … 296 Dumitru Batinetu-Giurgiu, Neculai Stanciu a k2 m m2 mn 4n sin 2n k 1 x k x k 1 n (5) Proof: In the triangle AkMAk+1, by the Law of Cosines we have, a k2 x k2 x k21 x k x k 1 cosAk MAk 1 x k2 x k21 x k x k 1 cos mk , k 1, n , where we apply AM-GM inequality and we obtain that: m a k2 m a k2 x k x k 1 1 cos mk x k x k 1 sin k , k 1, n sin k , k 1, n x k x k 1 Hence: n a k2 m sin k k 1 x k x k 1 k 1 x Since the function f : 0, R , f ( x) sin is convex on 0, , by Jensen’s 2 2 inequality we have that: n m m m2 mn sin k n sin 2n k 1 n From the last two relations we get what must be demonstrated Remark 5.1 If n≥5, M IntA1 A2 An , then n m k 1 k ■ 2 and (5) becomes: a k2 4n sin n, k 1 x k x k 1 i.e the problem11386, proposed by R.N Gologan in G.M.-B nr 8/1971, pp.487 n REFERENCES [1] [2] Bătineţu-Giurgiu, D.M., Gaz Mat.-B, 115(7-9), 359, 2010 Minculete, N., Gobej, A., Gaz Mat - A, 28(1-2), 1, 2010 www.josa.ro Mathematics Section .. .Some geometric inequalities … 292 Dumitru Batinetu-Giurgiu, Neculai Stanciu n uk Vn k 1... if there exists t R such * that xk tyk , k 1, n www.josa.ro Mathematics Section Some geometric inequalities … Dumitru Batinetu-Giurgiu, Neculai Stanciu 293 Observation 1.2 If m = 1, then... m =1 in (2”’) we obtain the relation (18) from [2] ISSN: 1844 – 9581 Mathematics Section Some geometric inequalities … 294 Dumitru Batinetu-Giurgiu, Neculai Stanciu Theorem If we have the notations