1. Trang chủ
  2. » Giáo án - Bài giảng

066 đề thi HSG toán 9 huyện hồng lĩnh 2018 2019

6 184 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 310,36 KB

Nội dung

PHÒNG GD-ĐT HỒNG LĨNH KỲ THI CHỌN HỌC SINH GIỎI THỊ XÃ LỚP NĂM HỌC 2018-2019 ĐỀ THI CHÍNH THỨC Mơn : TỐN I PHẦN GHI KẾT QUẢ (Thí sinh cần ghi kết quẩ vào giấy thi) Câu Tính giá trị biểu thức A  28  10   Câu Giả sử * phép toán thỏa mãn với số nguyên x, y, ta có x * y  x y  x  y (với phép toán nhân   , phép cộng    thơng thường Tìm số nguyên không âm x, y biết x * y  Câu Tìm  x; y  biết x  y  x  y  2 100 Câu Cho số thực không âm a, b thỏa mãn a biểu thức B  a  b100  a101  b101  a102  b102 Tính giá trị  b2019 Câu Cho C  999 99 Tính tổng chữ số C 2018 2018 cs 1 1 ; ; ; ; ; Tìm số hạng thứ 12 dãy 10 17 26 2018 Câu Tìm giá trị nhỏ biểu thức P  x  2018x  2018 Câu Cho  góc nhọn thỏa mãn tan   cot   Giá trị D  sin .cos  ? Câu Tam giác ABC vuông A, biết AC  16cm, AB  12cm Các đường phân giác ngồi góc B cắt đường thẳng AC D E Tính DE Câu 10 Cho tam giác ABC vuông A, phân giác góc B C cắt I, gọi H hình chiếu I BC.Giả sử BH  5cm, CH  7cm Tính diện tích tam giác ABC Câu Cho dãy số II PHẦN TỰ LUẬN (Thí sinh trình bày lời giải vào giấy thi) Câu 11 a) Tính giá trị biểu thức 1 1     2 3 4 99 100  100 99 b) Giải phương trình:  x  14  x   x  15 x  38 Q x  x y  y  x y  x  y 3 Câu 12 Cho O trung điểm đoạn AB Trên nửa mặt phẳng có bờ đường thẳng AB vẽ tia Ax, By vng góc với AB Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vng góc với OC cắt tia By D a) Chứng minh AB  AC.BD b) Kẻ OM vng góc với CD M Chứng minh AC  CM c) Từ M kẻ MH vng góc với AB H Chứng minh BC qua trung điểm MH c) Chứng minh nếu: Câu 13 Hai phụ nữ An, Chi hai người đàn ơng Bình, Danh vận động viên Một người vận động viên bơi lội, người thứ hai vận động viên trượt băng, người thứ ba vận động viên thể dục dụng cụ người thứ tư vận động viên cầu lông Có ngày nọ, họ ngồi xung quanh bàn vuông (mỗi người ngồi cạnh người) Biết (i) Chi Danh ngồi cạnh (ii) Vận động viên thể dục dụng cụ ngồi đơi diện Bình (iii) Vận động viên bơi lội ngồi bên trái An (iv) Một người phụ nữ ngồi bên trái vận động viên trượt băng Hãy cho biết người vận động viên chơi mơn ? ĐÁP ÁN Câu A  Câu  x; y   1;4  ;  4;1 ;  0;9  ;  9;0  Câu  x; y   1;2  Câu B  0,1,2 Câu Ta có :      C  999 992   999 992  1    999 99  1 999 99  1  2018 CS  2018 CS   2018 CS  2018 CS   999 98.102018   999 98000 001 2017 CS 2017 CS 2017 CS Vậy tổng chữ số C 9.2018  18162 1 1 1 Câu Số hạng thứ 12 dãy ; ; ; ; 10 17 26 145 Câu Giá trị nhỏ biểu thức P  x2018  2018x  2018 P  x 2018       2018 x  2017 so P  2018.2018 x 2018 1.1.1  2018 x   P  Min P   x  1 Câu D  Câu DE  30cm Câu 10 Diện tích tam giác ABC  5.7  35(cm2 ) Câu 11 Với số nguyên k , ta có : 1  k k    k  1 k k  k  1 k   k   k 1  k k  k  1   1  k k 1 Cho k  1.2.3 99 , ta được: 1 1 Q     2 3 4 99 100  100 99   1   1                 2  3  4 100    99 1    100 10 b) Điều kiện x  5 ta viết lại phương trình:  x  14 x   x2  15x  38   x   x    x     x  5  16 Đặt a  x  7; b  x  Khi phương trình cho trở thành: a  b  2ab  a  b2   a  b   16    a  b  4 Nếu a  b   x   x    x  Nếu a  b  4  x   x   4  x   x    0(*) Dễ có phương trình * vơ nghiệm vì: t  t   có   23  Vậy phương trình cho có nghiệm x  1 c) Đặt a  x , b  y  a  0, b  0 x  x y  y  x y   a  a 6b  b  a 3b  Ta có:  a3  a 2b  b3  ab   a  a  b   b2  a  b    a a  b  b a  b    a  b a  b   a  b   a  b  Hay x2  y  Câu 12 D I B C A K H B O a) Chứng minh OAC DBO( g.g ) OA AC AB AB   OA.OB  AC.BD   AC.DB  AB  AC.BD(dfcm) DB OB 2 OC AC b) Theo câu a ta có: OAC DBO( g.g )   OD OB OC AC OC OD Mà OA  OB     OD OA AC OA  Chứng minh OCD ACO(c.g.c)  OCD  ACO Chứng minh OAC  OMC (ch  gn)  AC  MC (dfcm) c) Ta có OAC  OMC  OA  OM , CA  CM  OC trung trực AM  OC  AM Mặt khác OA  OM  OB  AMB vng M  OC / / BM (vì vng góc với AM ) hay OC / / BI Chứng minh C trung điểm AI Do MH / / AI theo hệ định lý Talet ta có: MK BK KH   IC BC AC Mà IC  AC  MK  HK  BC qua trung điểm MH (đpcm) Câu 13 Vì Chi Danh ngồi cạnh nên ta giả sử Chi Danh ngồi tên hai cạnh liên tiếp hình vng ABCD Khi ta có trường hợp: Danh (nam) TDDC An (nữ) Chi (nữ) Bình (nam) Bơi lội Trường hợp 1: hình +Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Danh vận động viên thể dục dụng cụ (TDDC) +Vận động viên bơi lội ngồi bên trái An nên Bình vận động viên bơi lội Khi Chi An hai vận động viên bạn nữ trược băng cầu lông, điều nầy trái với mệnh đề “Một phụ nữ ngồi bên trái vận động viên trượt băng” Danh (nam) Bình (nam) Chi (nữ) TDDC An (nữ) Trường hợp 2, hình +Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Chi vận động viên thể dục dụng cụ (TDDC) Chi vận động viên ngồi bên trái An nên không thỏa mãn “Vận động viên bơi lội ngồi bên trái An” Trường hợp 3, hình Chi (nữ) Danh (nam) TDDC Bình (nam) An (nữ) Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Chi vận động viên thể dục dụng cụ (TDDC) nên Danh vận động viên TDDC vận động viên bên trái An nên Danh không thỏa mãn với “vận động viên bơi lội ngồi bên trái An” Trường hợp Hình Chi (nữ) TDDC Danh (nam) Trượt băng An (nữ) Cầu lơng Bình (nam) Bơi lội +Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Chi vận động viên thể dục dụng cụ (TDDC) +Vận động viên bơi lội ngồi bên trái An nên Bình vận động viên bơi lội +Một phụ nữ ngồi bên trái vận động viên trượt băng nên trường hợp Danh vận động viên trượt băng Do An vận động viên cầu lơng Vậy +An vận động viên cầu lơng +Bình vận động viên bơi lội +Chi vận động viên TDDC +Danh vận động viên trượt băng ... 0 ;9  ;  9; 0  Câu  x; y   1;2  Câu B  0,1,2 Câu Ta có :      C  99 9 99 2   99 9 99 2  1    99 9 99  1 99 9 99  1  2018 CS  2018 CS   2018 CS  2018 CS   99 9 98 .1 02018. .. 98 .1 02018   99 9 98 000 001 2017 CS 2017 CS 2017 CS Vậy tổng chữ số C 9. 2018  18162 1 1 1 Câu Số hạng thứ 12 dãy ; ; ; ; 10 17 26 145 Câu Giá trị nhỏ biểu thức P  x2018  2018x  2018 P  x 2018 ... 1   1  k k 1 Cho k  1.2.3 99 , ta được: 1 1 Q     2 3 4 99 100  100 99   1   1                 2  3  4 100    99 1    100 10 b) Điều kiện x

Ngày đăng: 30/08/2019, 11:29

TỪ KHÓA LIÊN QUAN