1. Trang chủ
  2. » Giáo án - Bài giảng

058 đề thi vào 10 chuyên toán tây ninh 2019 2020

6 140 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 253,96 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO TÂY NINH KỲ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2019-2020 Ngày thi: 02 tháng năm 2019 Mơn thi: TỐN (chun) Thời gian lầm bài: 150 phút Câu (1,0 điểm) Giải phương trình: x4  x2  20  Câu (1,0 điểm) Rút gọn biểu thức T    2a  2  a  1 a a 2 Câu (1,0 điểm) Cho hình thang cân ABCD  AB / /CD  có CD  AD  AB  Tính diện tích hình than cân 2   x  xy  x  y  42 Câu (1,0 điểm) Giải hệ phương trình:   7 xy  y  42  x Câu (1,0 điểm) Cho hai phương trình x2  6ax  2b  x2  4bx  3a  với a, b số thực Chứng minh 3a  2b  hai phương trình cho có nghiệm Câu (1,0 điểm) Tìm số tự nhiên có chữ số có dạng abcd cho abcd  k  k  * ab  cd  1(các chữ số tự nhiên a, b, c, d giống nhau) Câu (1,0 điểm) Cho tam giác nhọn ABC có BAC  600 AB  AC Đường tròn tâm I nội tiếp ABC tiếp xúc với AB, AC D E Kéo dài BI , CI cắt DE F G, gọi M trung điểm BC Chứng minh MFG Câu (2,0 điểm) Cho tam giác ABC vuông A nội tiếp đường tròn  O  có tâm O a) (1đ) Trên cung nhỏ AB đường tròn (O) lấy điểm D (khác A, B) Gọi K giao điểm thứ hai đường tròn tâm A bán kính AC với đường thẳng BD Chứng minh AD đường trung trực CK b) (1đ) Lấy P điểm đoạn OC (khác O, C) Gọi E , F hình chiếu vng góc P AB AC Gọi Q điểm đối xứng P qua đường thẳng EF Chứng minh Q thuộc đường tròn  O  Câu (1,0 điểm) Chứng minh  x  y  z   xyz   x  y  z  xy  yz  xz  với x, y, z số thực không âm Đẳng thức xảy ? ĐÁP ÁN Câu Đặt t  x , t  , phương trình cho trở thành t  t  20  (1) t  4(tm)  x  2   12  4.1. 20   81   t2  5(ktm) Vậy phương trình cho có nghiệm x  2 Câu   a 2 a 1  a 1 2a  2  a  1  a Vậy T     a   a  1  a 2   a 2   a 1  a 1  Câu A B D H K C Gọi H , K chân đường cao kẻ từ A B xuống CD S ABCD diện tích hình thang ABCD Ta có : ADH  BCK AHD  BKC  900 ; ADH  BCK AD  BC nên DH  CK Mặt khác ABKH hình chữ nhật nên AB  HK suy DH  CD  HK 2 Do đó: AH  AD2  DH  Vậy S ABCD  AH  AB  CD   12 Câu 2   x  xy  x  y  42   7 xy  y  42  x (1) (2) Lấy 1    ta được:  x  y    x   y  x  7  y  Thay x   y vào (1) ta được: x  x  42     x   y  6 Vậy hệ cho có hai nghiệm  7;7   6; 6  Câu 1'  9a  2b; '2  4b2  3a 1/   2/   3a  1   2b  1  3a  2b  2 Do 3a  2b  nên 1/   2/  Suy có hai giá trị 1/ ,  2/ khơng âm hay hai phương trình cho có nghiệm Câu   abcd  k  k  *  k  100ab  cd  100  cd  cd  k  100  101cd  101cd  k  100  101cd   k  10  k  10  Do k  100 (vì k có chữ số)  k  10  101 101 số nguyên tố   k  10  101  k  10  101  k  91 Suy abcd  912  8281 Câu A E F G D I B M C Ta có tứ giác CIEF nội tiếp CEF  AED  600 (vì ADE đều) CIF  ABC  ACB  600   Suy IFC  IEC  900 nên FM  MB  MC (1) Mặt khác tứ giác BDGI nội tiếp ADE  600 ( ADE ) BIG  CIF  600 Suy IGB  IDB  900 nên GM  MB  MC (2) Lai có GMF  1800  CMF  BMG  1800  ABC  ACB  600 Từ (1), (2), (3) suy MF  MG GMF  600 nên MFG (3) Câu K A Q E D B F I O P C a) BKC  BAC  450 (1); BDC  900  KDC  900 (2) Từ (1) (2) suy KDC vuông cân D nên DC  DK Ta lại có AC  AK AD trung trực CK b) Gọi I giao điểm AP, EF Ta có IP  IQ  IA nên AQP vuông Q 1 Ta có FP  FQ vầ PFC vng cân F nên F tâm đường tròn ngoại tiepess PCQ 1 Do đó: PQC  PFC  900  450 (2) 2 Từ (1) (2) suy AQC  AQP  PQC  1350 Suy AQC  ABC  1350  450  1800 Vậy tứ giác ABCQ nội tiếp, nên Q thuộc đường tròn  O  Câu x  y  z  xyz   x  y  z  xy  yz  zx   x3  y  z  3xyz  x y  x z  y x  y z  z x  z y   x  x  y  x  z   y  y  x  y  z   z  z  x  z  y   ** Khơng tính tổng qt, giả sử x  y  z  Khi **  z  z  x  z  y    x  y   x  x  z   y  y  z   (hiển nhiên đúng) Dấu xảy x  y  z hai ba số nhau, số lại ... k  100 ab  cd  100  cd  cd  k  100  101 cd  101 cd  k  100  101 cd   k  10  k  10  Do k  100 (vì k có chữ số)  k  10  101 101 số nguyên tố   k  10  101  k  10  101 ... xy  y  42  x (1) (2) Lấy 1    ta được:  x  y    x   y  x  7  y  Thay x   y vào (1) ta được: x  x  42     x   y  6 Vậy hệ cho có hai nghiệm  7;7   6; 6  Câu... Suy abcd  912  8281 Câu A E F G D I B M C Ta có tứ giác CIEF nội tiếp CEF  AED  600 (vì ADE đều) CIF  ABC  ACB  600   Suy IFC  IEC  900 nên FM  MB  MC (1) Mặt khác tứ giác BDGI nội

Ngày đăng: 30/08/2019, 11:28

TỪ KHÓA LIÊN QUAN