Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
623,5 KB
Nội dung
Soạn: Hè 2009 Giảng:Hè 2009 Chuyên đề MỘT SỐ PHƯƠNG PHÁPGIẢITOÁN SỐ HỌC I/ PHƯƠNGPHÁP DÙNG SƠ ĐỒ ĐOẠN THẲNG */ Sơ đồ đoạn thẳng là hình ảnh trực quan biểu diễn mối quan hệ giữa các đại lượng đã cho và các đại lượng phải tìm. Việc lựa chọn độ dài của các đoạn thẳng để biểu diễn các đại lượng và sắp thứ tự của các đoạn thẳng trong sơ đồ hợp lý sẽ giúp chúng ta tìm được lời giải một cách tường minh. */ Ví dụ 1: Tìm số bị chia và số chia biết rằng thương bằng 5, dư bằng 12 và tổng của số bị chia, số chia và số dư bằng 150 GIẢI: +/ Vẽ sơ đồ đoạn thẳng : Số chia ____ Số bị chia ______________________ } 150 Số dư ___ Theo bài ra ta có: Số bị chia + số chia + số dư = 150 Nhìn vào sơ đồ, dễ thấy: 6 lần số chia bằng: 150-12-12 = 126 Vậy số chia bằng: 126 : 6 = 21 Số bị chia bằng : 21.5 + 12 = 117 */ Ví dụ 2: Tuổi anh hiện nay gấp ba lần tuổi em trước kia, lúc anh bằng tuổi em hiện nay.Khi tuổi em bằng tuổi anh hiện nay thì tổng số tuổi của hai người sẽ là 28. Tính tuổi của mỗi người hiện nay? GIẢI: Ta tóm tắt lại bài toán như sau: -Tuổi anh hiện nay = 3 lần tuổi em trước kia - Tuổi anh trước kia = Tuổi em hiện nay - Tuổi em sau này = Tuổi anh hiện nay - Tuổi anh sau này + Tuổi em sau này = 28 +/ Vẽ sơ đồ biểu thị tuổi em trước kia bằng đoạn thẳng AB Tuổi anh hiện nay bằng đoạn thẳng AC ( gấp 3 AB) Tuổi em trước kia: A____B Tuổi em hiện nay: A____B____D (Tuổi anh trước kia) Tuổi em sau này : A____B____D____C (Tuổi anh hiện nay) Tuổi anh sau này : A____B____D____C____E Hiệu số giữa tuổi anh và tuổi em không đổi theo thời gian nên nếu ta biểu thị tuổi anh trước kia ( tức tuổi em hiện nay) là AD, tuổi anh sau này là AE thì ta có : BD = DC = CE Mặt khác, vì AC = 3 AB nên BC = 2 AB hay AB = BD = DC = CE Lại có Tuổi anh sau này + Tuổi em sau này = 28 Nhìn vào sơ đồ ta có Tuổi em hiện nay là : [28 : ( 3+4) ] . 2 = 8 ( tuổi) Tuổi anh hiện nay là: [28 : ( 3+4) ] . 3 = 12 ( tuổi) Bài tập áp dụng Bài 1 : Mẹ 30 tuổi, con 3 tuổi. Hỏi bao nhiêu năm nữa thì tuổi mẹ gấp bốn làn tuổi con? HD giải: +/ Vẽ sơ đồ biểu diễn năm tuổi mẹ gấp 4 lần tuổi con Tuổi con: ._____. Tuổi mẹ : ._____._____._____._____. +/ Hiệu số tuổi mẹ và tuổi con không đổi theo thời gian…. Nhìn vào sơ đồ => Tuổi mẹ [( 30-3 ) : 3] . 4 = 36 Như vậy sau 36 - 30 = 6 năm nữa tuổi mẹ sẽ gấp 4 lần tuổi con Bài 2 : Năm 2008 bố 40 tuổi, An 11 tuổi, em Bình 5 tuổi. Đến năm nào thì tuổi bố bằng tổng số tuổi của hai chị em. HD gi ải +/ Vẽ sơ đồ biểu diễn năm mà tuổi bố bằng tổng số tuổi của hai chị em Tuổi bố ._________________._____. 40 tuổi x TS tuổi 2 chị em .___________._____._____. 16 tuổi x x Năm 2008 TS tuổi của hai chị em là 11 + 5 = 16 ( tuổi ) Gọi x là số năm tăng thêm khi mà tuổi bố bằng tổng số tuổi của hai chị em. Mỗi năm mỗi người đều tăng thêm 1 tuổi do đó TS tuổi tăng của hai chi em gấp đôi số tuổi tăng của bố. Nhìn vào sơ đồ ta thấy x = 40 – 16 = 24 Vậy sau 24 năm nữa tuổi bố sẽ bằng TS tuổi của hai chị em. Khi đó là năm 2032 B à i 3 : Tìm số tự nhiên có tận cùng bằng 7, biết rằng sau khi xóa chữ số 7 đó thì số ấy giảm đi 484 đơn vị. HD giải: Ta nhận thấy rằng nếu xóa đi cs 7 ở tận cùng của một số nghĩa là trừ số đó đi 7 đơn vị rồi chia cho 10 . +/ Vẽ sơ đồ biểu diễn mối quan hệ giữa số mới ( đã bị xóa đi cs 7) và số đã cho: Số mới: .____. Số đã cho: .____.____.____.____.____.____.____.____.____.____._ 7_. Nhìn vào sơ đồ dễ thấy số phải tìm là: [(484 – 7) : 9 ]. 10 + 7 = 537 Bài 4 : Hai ngăn sách lúc đầu có tổng cộng118 cuốn. Sau khi lấy đi 8 cuốn ở ngăn I, thêm 10 cuốn vào ngăn II, thì số sách ở ngăn II gấp đôi số sách ở ngăn I. Tính số sách ở mỗi ngăn lúc đầu? HD giải +/ Vẽ sơ đồ biểu diễn sô sách ở hai ngăn lúc sau ( số sách ở ngăn II gấp đôi ngăn I) Ngăn I ._____. Ngăn II ._____._____. Theo bài ra só sách ở hai ngăn lúc đầu la 118 cuốn só sách ở hai ngăn lúc sau là 118 – 8 + 10 = 120 Nhìn vào sơ đồ thấy ngay số sách ở ngăn I lúc sau là (120: 3).1 = 40 ( cuốn) Số sách ở ngăn II lúc sau là ( 12 : 3) . 2 = 80 (cuốn) Số sách ở ngăn I lúc đầu là: 40+8 = 48 ( cuốn) Số sách ở ngăn II lúc đầu là: 80 – 10 = 70 ( cuốn) Bài 5: Hiện nay anh 15 tuổi. Năm mà tuổi anh bằng tuổi em hiện nay thì lúc đó tuổi em chỉ bằng 1/3 tuổi anh. Hỏi hiện nay em bao nhiêu tuổi? HD giải +/ Vẽ sơ đồ biểu diễn Tuổi em lúc trước ._____ Tuổi em hiện nay ._____._____._____. ( Tuổi anh lúc trước) Tuổi anh hiện nay ._____._____._____._____._____. +/ Ta biết rằng hiệu số tuổi anh và tuổi em không đổi theo thời gian, hiện nay anh 15 tuổi vậy tuổi em hiện nay là (15 : 5 ) . 3 = 9 ( tuổi) Bài 6: Cách đây 7 năm tuổi ông gấp 4 lần tuổi cháu. Hiện nay, nếu tuổi của ông bớt đi 7 thì sẽ gấp ba tuổi cháu. Tính tuổi ông và tuổi cháu hiện nay? HD giải: +/ Vẽ sơ đồ biểu diễn mối quan hệ giữa tuổi ông và tuổi cháu Cách đây 7 năm Tuổi cháu ._____. Tuổi ông ._____._____._____._____. Hiện nay Tuổi cháu ._____._7_. Tuổi ông .________.________.______7_. Nhìn vào sơ đồ ta thấy: 4 lần tuổi cháu lúc trước = 3 lần tuổi cháu hiện nay 4 lần tuổi cháu lúc trước = 3 ( tuổi cháu lúc trước cộng 7) => 4 lần tuổi cháu lúc trước = 3 lần tuổi cháu lúc trước + 21 => Tuổi cháu lúc trước là 21 Tuổi cháu hiện nay là 21 + 7 = 28 Tuổi ông hiện nay là 28 . 3 + 7 = 91 Bài 7 : Khi con học hết bậc tiểu học thì tuổi mẹ bằng 1/5 tổng số tuổi của những người còn lại trong gia đình. Đến khi con vào đại học thì tuổi mẹ vẫn bằng 1/5 tổng số tuổi của những người ấy. Hỏi gia đình đó có mấy người? HD giải: Khi con học hết bậc TH thì tuổi mẹ bằng 1/5 TS tuổi của những người còn lại khi con vào ĐH thì tuổi mẹ vẫn bằng 1/5 tổng số tuổi của những người ấy. Mỗi năm, mỗi người tăng 1 tuổi => Số tuổi tăng thêm của mẹ bằng 1/5 số tuổi tăng thêm của những người còn lại Vậy số người còn lại trong gia đình là 5 người, kể cả mẹ, gia đình đó có 6 người. BTVN Bài 8: Cho phân số 149 95 . Bớt tử và mẫu cùng một số a thì phân số rút gọn được thành 5 3 . Tìm số a ? ( ĐS: a = 14) Bài 9 : Mẫu của một phân số lớn hơn tử 3507 đơn vị, sau khi rút gọn ta được phân số 12 5 . Hãy tìm phân số khi chưa rút gọn ? (ĐS: 2505/ 6012) Bài 10: Lớp 7A của trường THCS chất lượng cao chỉ có hai loại HS giỏi và HS khá. Cuối HKI số HS giỏi bằng 7 2 số HS khá. Đến cuối năm có thêm 1 HS khá được xếp vào loại giỏi nên số HS giỏi bằng 3 1 số HS khá. Tính số HS của lớp 7A ? ( ĐS: 36) II/ PHƯƠNGPHÁP LỰA CHỌN: */ Khi giảicác bài toán về số tự nhiên,ta xét mọi trường hợp có thể xảy ra đối với một đối tượng, sau đó lựa chọn trường hợp nào thỏa mãn các điều kiện của bài toán. */ Ví dụ 1: Tìm số tự nhiên có ba cs biết rằng bình phương cs hàng chục bằng tích hai cs kia và nếu đỏi chỗ hai cs hàng trăm và hàng đơn vị cho nhau thì số ấy giảm đi 594 đơn vị. GIẢI: Gọi số phải tìm là abc . Theo bài ra ta có: b 2 = a.c và abc - cba = 594 Xét phép trừ abc dễ thấy a > c nên phép trừ c – a ở cột đơn vị có nhớ cba ta có : 10 + c – a = 4 594 => a – c = 6 Cácsố thỏa mãn ĐK này là : 06b ; 17b ; 28b ; 39b Mặt khác từ b 2 = a.c => b 2 = 6.0 = 0 = 0 2 b 2 = 7.1 = 7 ( Loại) b 2 = 8.2 = 16 = 4 2 b 2 = 9.3 = 27 ( loại) Vậy có hai số thỏa mãn ĐK bài ra là số 600 và 842 */ Ví dụ 2: Tìm số tự nhiên có ba cs biết rằng số đó chia hết cho 18 và các cs của nó nếu sắp xếp từ nhỏ đến lớn thì tỷ lệ với 1; 2; 3 GIẢI Gọi số có ba cs phải tìm là A Vì các cs của A tỉ lệ với 1; 2; 3 nên các cs của A có thể là 1; 2; 3 hoặc 2; 4; 6 hoặc 3; 6; 9 Lại có A 18 =>{ A 9=> tổng các cs của A chia hết cho 9 do đó chỉ có bộ ba số A 2 ↓ ( 3; 6; 9) thỏa mãn ĐK đó cs tận cùng là 6 Vậy có hai số thỏa mãn các ĐK của bài ra : 396 và 936 */ Bài tập áp dụng: Bài 1: Tìm số tự nhiên có hai cs, biết rằng tổng các cs của nó bằng 12 và nếu đổi chỗ hai cs cho nhau thì được số lớn hơn số ban đầu là 18. HD giải: Gọi số phải tìm là ab . Theo bài ra ta có a + b = 12 (1) và ba - ab = 18 (2) Từ (2) => b > a. Cácsố thỏa mãn ĐK (1): 93 ; 84 ; 75 Xét 93 – 39 ≠ 18 ( loại) ; 84 – 48 ≠ 18 ( loại) ; 75 – 57 = 18 ( chọn) Vậy số phải tìm là 75 Bài 2: Tìm số tự nhiên có ba cs, biết rằng cs hàng chục bằng trung bình cộng của hai cs kia và số đó chia hết cho 45. HD giải: Gọi số phải tìm là abc . Theo bài ra ta có a + c = 2b (*) và abc 45 (**) Từ abc 45 => abc 5 và abc 9 Từ abc 5 => c ∈ { 0; 5 } +/ Với c = 0 => a = 2b và a + b + c 9 hay 3b 9 => b 3 b ∈ { 3; 6; 9 } Với b = 6; 9 thì a > 10 ( loại). Vậy b = 3; a = 6; c = 0 Ta được số 630 +/ Với c = 5 ta có a + 5 = 2b => a ∈ { 1; 3; 5; 7; 9 } => b ∈ { 3; 4; 5; 6; 7 } Ta được cácsố 135 ; 345 ; 555; 765; 975 ( 9) ( 9) Vậy cácsố thỏa mãn ĐK bài ra là : 630; 135; 765 Bài 3: Tìm số tự nhiên có ba cs, biết rằng cs hàng trăm gấp ba cs hàng đơn vị và số đó giảm đi 396 nếu viết theo thứ tự ngược lại. HD giải Gọi số phải tìm là abc . Theo bài ra ta có: a = 3c (1) và abc - cba = 396 (2) Từ (2) => 99a – 99c = 396 => a – c = 4 kết hợp với (1) => c = 2 và a= 6 Ta có 26b - 62b = 396 => 0b = 0 thỏa mãn với mọi b ∈ N Mặt khác theo bài ra 0 ≤ b ≤ 9 Vậy cácsố thỏa mãn ĐK bài ra có dạng 26b với b ∈ { 0; 1; 2; 3;….; 9 } Bài 4: Năm sinh của hai nhà Toánhọc Việt Nam thời trước là một số có bốn cs, số đó không thay đổi khi đổi chỗ các cs hàng nghìn và hàng đơn vị, hàng trăm và hàng chục, ngoài ra tổng của 4 cs đó bằng 10. Tìm năm sinh của hai nhà toánhọc đó ? HD giải: Gọi năm sinh của hai nhà toánhọc đó là abba . Theo bài ra ta có a + b + b + a = 10 => a + b = 5 Dễ thấy 1 ≤ a < 2 => a = 1 Từ đó b = 4 Vậy năm sinh của hai nhà toánhọc đó là năm 1441 ( Hai nhà Toánhọc có cùng năm sinh đó là Lương Thế Vinh và Vũ Hữu ) Bài 5: Tìm số có 4 cs, biết rằng số đó chia hết cho 2 và 3, đồng thời các cs hàng nghìn, hàng trăm, hàng chục và hàng đơn vị của số đó theo thứ tự là 4 số tự nhiên liên tiếp xếp theo thứ tự tăng dần. HD giải: Gọi số đã cho là A = abcd với 0< a; b; c; d ≤ 9 Theo bài ra ta có : b = a+1; c = b+1; d = c+1 (1) A 2 => d ∈ { 2; 4; 6; 8 } (2) Kết hợp cả (1) và(2) => d ∈ { 4; 6; 8 } Ta có cácsố : 1234; 3456; 5678 trong đó chỉ có số 3456 3 Vậy số thỏa mãn các yêu cầu của bài ra là 3456 Bài 6: Tuổi bà năm nay gấp 3,2 lần tuổi cháu, mười năm về trước tuổi bà gấp 5,4 lần tuổi cháu. Bà thường nói “ ước gì bà sống được trăm tuổi để thấy cháu mình thành đạt”. Hãy tính tuổi của hai bà cháu hiện nay ? HD giải: Ta nhận xét rằng tuổi của mỗi người là một số tự nhiên. Năm nay tuổi bà gấp 3,2 lần tuổi cháu, để tuổi bà là một số tự nhiên thì tuổi cháu phải có cs tận cùng là 0 hoặc 5 mười năm về trước tuổi bà gấp 5,4 lần tuổi cháu => hiện nay tuổi cháu phải > 10 Bà thường ước bà sống được trăm tuổi => tuổi bà < 100 => tuổi cháu < 35 ( vì 35 .3,2 > 100) Do đó tuổi cháu ∈ { 15; 20; 25; 30 } Tương ứng tuổi bà ∈ { 48; 64; 80; 96 } Trong các cặp số này chỉ có cặp ( 20; 64 ) thỏa mãn ĐK mười năm trước tuổi bà gấp 5,4 lần tuổi cháu. Vậy hiện nay bà 64 tuổi, cháu 20 tuổi Bài 7: Hưởng ứng phong trào thi đua chào mừng năm học mới, trong ba tuần đầu tháng 9, các bạn HS lớp 7A đã đạt được 28 điểm 10. Biết rằng số điểm 10 của tuần sau cao hơn tuần trước và số điểm 10 của tuần thứ ba gấp ba lần số điểm 10 của tuần đầu. Hỏi mỗi tuần lớp 7A đạt được bao nhiêu điểm 10 ? HD giải: Gọi số điểm 10 của các tuần lần lượt là a; b; c . a ≠ 0; b ≠ 0; c ≠ 0 Theo bài ra ta có a < b < c ; c = 3a và a + b + c = 28 Vì c = 3a => 4a + b = 28 => b 4 +/ Nếu b = 4 => a =6 => a> b mâu thuẫn với đề bài => b>4 + Nếu b = 12 => a = 4 => c = 12 => b = c mâu thuẫn với đề bài => b< 12 Vậy b = 8. Từ đó => a = 5; c = 15 Bài 8: Bé Bi hỏi ông “ Ông ơi, ông năm nay bao nhiêu tuổi ạ”. Ông trả lời: “ Tuổi ông năm nay là một số chẵn có hai cs, nếu viết các cs của tuổi ông theo thứ tự ngược lại thì được tuổi của bố cháu, nếu cộng các cs của tuổi bố cháu thì được tuổi của cháu, cộng cả tuổi ông, tuổi bố cháu và tuổi cháu thì được 144” Hỏi ông bé Bi năm nay bao nhiêu tuổi ? HD giải: Gọi tuổi ông là A ___ tuổi bố là B tuổi cháu C theo bài ra ta có A = ab = 10a + b với a > b và b ∈ { 2; 4; 6 ;8 }(1) B = ba = 10 b + a C = b + a Và A + B + C = 10a + b + 10b + a + a + b = 144 => 12a + 12b = 144 => a + b = 12 Theo (1) ta có b ∈ { 2; 4; 6 ;8 } và a > b => a=8; b=4 thỏa mãn ĐK bài ra Vậy ông bé Bi năm nay 84 tuổi Bài 9: a/ Tìm ba cs khác nhau và khác 0, biết rằng tổng cácsố tự nhiên có ba cs gồm cả ba cs ấy bằng 1554 b/ Tìm ba cs khác nhau và khác 0, biết rằng tổng cácsố tự nhiên có ba cs gồm cả ba cs ấy bằng 2886 còn hiệu giữa số lớn nhất và số nhỏ nhất bằng 495 c/ Có ba tờ bìa ghi cácsố 23; 79; và ab . Xếp ba tờ bìa thành một hàng thì được một số có 6 cs, cộng tất cả cácsố có 6 cs đó lại ( bằng cách đổi chỗ các tờ bìa) thì được 2 989 896. Tìm số ab ? HD giải: a/ Gọi ba số phải tìm là a,b,c. Theo bài ra ta có a ≠ b ≠ c ≠ 0 và abc + bca + cab + acb + bac + cba = 1554 => 222a + 222b + 222 c = 1554 => a + b + c = 7 ; Vì a ≠ b ≠ c ≠ 0. Không làm mất tính tổng quát giả sử a > b > c ta có c=1; b=2; a=4 Vậy ba cs khác nhau đó là 1; 2; 4 b/ Gọi ba số phải tìm là a,b,c. Theo bài ra ta có a ≠ b ≠ c ≠ 0 và a > b > c abc + bca + cab + acb + bac + cba = 2886 Và abc - cba = 495 Từ abc + bca + cab + acb + bac + cba = 2886 => 222a + 222b + 222c = 2886 => a + b + c = 13 Lại có abc - cba = 495 99a – 99c = 495 a – c = 5 => a ∈ { 6, 7, 8, 9 } Tương ứng c ∈ { 1, 2, 3, 4 } +/ Nếu a = 6; c = 1 => b = 6 ( loại -> vì b = a ) +/ Nếu a = 7; c = 2 => b = 4 Được số 742 thỏa mãn 742 – 247 = 495 +/ Nếu a = 8; c = 3 => b = 2 ( loại -> vì b < c) +/ Nếu a = 9; c = 4 => b = 0 ( loại) Vậy ba cs phải tìm là 7; 4; 2 c/ Tương tự như phần a và b, ta có ab2379 + 7923ab + ab7923 + 2379ab + 2379ab + 7923ab = 2 989 896 => 2. ababab + ( 237900+ 230079+ 792300+ 790023+ 2379+ 7923) = 2 989 896 => 2.10101. ab = 2989896 – 2 060 604 => 2.10101. ab = 929 292 => ab = 46 Bài 10 Tìm số tự nhiên x, biết rằng tổng các cs của x bằng y, tổng các cs của y bằng z và x + y + z = 60 HD giải Dễ thấy x là số có hai cs. Đặt x = ab = 10 a + b Khi đó y = a + b. Có hai trường hợp xảy ra đối với z +/ Trường hợp y = a + b ≤ 9 thì z = a + b +/ Trường hợp y = a + b ≥ 10 thì z = a + b – 9 - Xét trường hợp y = a + b ≤ 9: Ta có x + y + z = 10a + b + (a + b) + (a + b) = 60 => 12a + 3b = 60 => 4a + b = 20 => b 4 Vậy b ∈ { 0; 4; 8 } Tương ứng a ∈ { 5; 4; 3 } Với a = 3; b = 8 thì a + b > 9 ( loại). Ta được cácsố thỏa mãn ĐK là 50; 44 - Xét trường hợp y = a + b ≥ 10 Ta có x + y + z = 10a + b + (a + b) + (a + b – 9 ) = 60 => 12a + 3b -9 = 60 => 12a + 3b = 69 => 4a + b = 23 => 4 ≤ a ≤ 5 hay a ∈ { 4; 5 } +/ Với a = 4 => b = 7 ta được số 47 +/ Với a = 5 => b = 3 => a+b < 9 ( loại ) Vậy số thỏa mãn ĐK bài ra là; 44 ; 47 ; 50. ____________________________________ III/ PHƯƠNGPHÁP GIẢ THIẾT TẠM */ Phươngpháp giả thiêt tạm là một trong những phương phápgiảitoán độc đáo, thường được áp dụng cho những bài toán trong đó đề cập đến hai đối tượng ( người, vật, sự việc…) có những t/c được biểu thị bằng 2 số lượng chênh lệch nhau Để giảicác bài toán, ta đưa ra các giả thiết mới nhằm chuyển bài toán về các bài toán quen thuộc đã biết cách giải hoặc dựa trên giả thiết tạm thời đó để suy luận tìm ra lời giải. Các cách giả thiết tạm cũng rất đa dạng: + Coi như tất cả các đố tượng đều thuộc cùng một loại + Thay một đối tượng này bằng một đối tượng khác có một số thuộc tính giữ nguyên và một số thuộc tính thay đổi + Hình dung ra một đối tượng mới có những thuộc tính nhất định… Vấn đề là phải biết chọn cách giả thiết tạm một cách hợp lý . */ Các ví dụ VD1 : Bài toán cổ “ Vừa gà, vừa chó Bó lại cho tròn, Ba mươi sáu con Một trăm chân chẵn” Hỏi có mấy con gà, mấy con chó ? GIẢI: + Phân tích : Đây là một bài toán cổ rất phổ biến. Rõ ràng cả 36 con không thể toàn là chó hoặc toàn là gà được, vì nếu như thế thì số chân ( 36.4=144) hoặc ( 36.2= 72) đều không phù hợp với giả thiết của bài toán. Song ta lại giả thiết có trường hợp ấy, để từ sự chênh lệch của số chân của TS các con vật với số chân của từng con gà, con chó mà suy ra số con vật mỗi loại . +/ Lời giải: Giả sử cả 36 con đều là gà Khi đó tổng số chân là : 36 .2 = 72 ( chân) So với bài ra bị hụt đi 100- 72 = 28 ( chân) Sở dĩ bị hụt đi như vậy vì trong sốcác con vật còn có chó. Nếu thay mỗi con gà bởi một con chó thì mỗi lần thay thêm được : 4 – 2 = 2 ( chân) Vậy số chó là : 28 : 2 = 14 ( con) Số gà là 36 – 14 =22 ( con) VD2 : Bạn Nam đi xe đạp từ A đến B với vận tốc 10 km/h, rồi đi tiếp từ B đến C với vận tốc 15 km/h. Biết rằng quãng đường BC ngắn hơn quãng đương AB là 1 km và thời gian đi quãng đường BC ít hơn thời gian đi quãng đường AB là 16 phút. Tính quãng đường AB ? Giải: Ta giả sử từ B bạn Nam đi với thời gian như thời gian đi trên quãng đường AB thì sẽ đi đến D quá C là 15. 60 16 = 4 ( km) A_____________B_________C___E_________D Quãng đường BD dài hơn quãng đường AB là 4 – 1 = 3 (km) Vận tốc đi trên quãng đường BD lớn hơn vận tốc đi trên quãng đường AB là 15 – 10 = 5 ( km/h) Thời gian Nam đi trên quãng đường AB là : 3 : 5 = 5 3 ( h) Quãng đường AB dài : 10 : 5 3 = 6 (km) */ Bài tập áp dụng: Bài 1: Một sốhọc sinh xếp hàng 12 thì thừa 5 học sinh, còn xếp hàng 15 cũng thừa 5 học sinh và ít hơn trước là 4 hàng. Tính sốhọc sinh. HD giải: Giả thiết tạm rằng số HS đó khi xếp hang 15 thì cũng được số hàng như khi xếp hàng 12, nghĩa là ta phải có thêm 4 hàng nữa. Khi đó có thêm: 15. 4 = 60 (HS) Trong hai trường hợp số HS ở mỗi hàng chênh lệch nhau : 15 – 12 = 3 (HS) Số hàng khi xếp hàng 12 là : 60 : 3 = 20 ( hàng) Số HS là: 20 . 12 + 5 = 245 ( HS) Bài 2: An vào cửa hàng mua 12 quyển vở và 4 bút chì hết 36000 đồng. Bích mua 8 quyển vở và 5 bút chì cùng loại hết 27500 đồng. Tính giá một quyển vở và một bút chì. HD giải: Giả sử An mua gấp đôi số hàng đã mua là 24 quyển vở và 8 bút chì hết 36 000. 2 = 72 000 đ, Bích mua gấp ba số hàng đã mua là 24 quyển vở và 15 bút chì hết 27 500 . 3 = 82 500 đ, Như vậy Bích mua nhiều hơn An 15 – 8 = 7 ( bút chì) Số tiền chênh lệch là 82 500 - 72 000 = 10 500 đ, Vậy giá tiền một bút chì là 10 500 : 7 = 1 500 đ, Giá tiền một quyển vở là ( 36 000 – 4. 1 500) : 12 = 2 500 đ, Bài 3: Người ta bơm nước vào một bể: dùng máy I trong 30 phút, dùng máy II trong 20 phút. Tính xem trong mỗi phút mỗi máy bơm được bao nhiêu lít nước, biết rằng mỗi phút máy II bơm được nhiều hơn máy I là 50 lít và tổng cộng hai máy bơm được 21000 lít nước. HD giải: Mỗi phút máy II bơm được nhiều hơn máy I là 50 lít, do đó trong 20 phút , máy II bơm được nhiều hơn máy I là 50. 20 = 1000 (l) Giả sử trong mõi phút , máy II và máy I cùng bơm được số lít nước như nhau . Khi đó trong thời gian 50 phút cả hai máy bơm được: 21 000 – 1000 = 20 000 (l) Vậy trong mỗi phút máy I bơm được 20 000: 50 = 400 (l) mỗi phút máy II bơm được 400 + 50 = 450 (l) Bài 4: Một tổ may phải may 1800 chiếc cả quần và áo trong 13 giờ. Trong 8 giờ đầu tổ may áo và trong thời gian còn lại tổ may quần. Biết rằng trong 1 giờ, tổ may được số áo nhiều hơn số quần là 30 chiếc. Tính số áo và số quần tổ đã may. HD giải: Giả sử trong thời gian còn lại tổ vẫn may áo . Khi đó số áo may thêm được là: (13 – 8). 30 = 150 ( chiếc) Số áo tổ đó may được trong 13 giờ là : 1 800 + 150 = 1 950 ( chiếc) Số áo tổ đó may được là (1950 : 13) . 8 = 1 200 ( chiếc) Số quần tổ đó may được là: 1800 – 1200 = 600 ( chiếc) Bài 5: Năm trước, hai nông trường có 500 con bò. Năm sau, số bò của nông trường I tăng 25%, số bò của nông trường II tăng 12,5%, do đó số bò của cả hai nông trường tăng 20%. Tính số bò năm trước của mỗi nông trường. HD giải: Giả sử số bò của nông trường II năm sau cũng tăng 25%. Khi đó TS bò của hai nông trường tăng thêm so với mức tăng thực tế là: 500. ( 25% – 20% ) = 25 ( con) Sở dĩ tăng thêm vì ta đã tính tăng thêm cho nông trường II là 25% – 12,5% = 12,5 % Vậy số bò năm trước của nông trường II là : 25 : 12.5% = 200 ( con) số bò năm trước của nông trường I là : 500 -200 =300 ( con) Bài 6: Quýt, cam mười bảy quả tươi Đem chia cho một trăm người cùng vui. Chia ba mỗi quả quýt rồi, Còn cam mỗi quả chia mười vừa xinh. Trăm người, trăm miếng ngọt lành, Quýt, cam mỗi quả tính rành là bao? HD giải Giả sử cả 17 quả đều là Quýt Khi đó số miếng quýt là : 17 . 3 = 51 (miếng) So với bài ra bị hụt đi : 100 – 51 = 49 (miếng) là do còn có cam Nếu thay mỗi quả quýt bằng một quả cam thì mỗi lần thay sẽ thêm vào được 10 – 3 = 7 ( miếng) Vậy số quả cam là : 49 : 7 = 7 (quả) Số quýt là 17 – 7 = 10 (quả) Bài 7: Khối 6 của một trường có 366 học sinh, gồm 8 lớp. Mỗi lớp gồm một số tổ, mỗi tổ 9 người hoặc 10 người. Biết rằng số tổ của các lớp đều bằng nhau, tính số tổ có 9 người, số tổ có 10 người của cả khối. HD giải: . Mỗi lớp gồm một số tổ mỗi tổ 9 người hoặc 10 người, Trước hết ta nhận thấy 366 : 10 = 36 còn dư 366 : 9 = 40 còn dư Do đó số tổ của các lớp nằm trong khoảng từ 37 đến 40 Mặt khác số tổ chia hết cho 8 => Số tổ của khối lớp 6 đó là 40 tổ Giả sử cả 40 tổ đều là tổ 10 người. Khi đó số HS của khối là: 40 .10 = 400 (HS) So với bài ra thừa ra 400 – 366 = 34 (HS) là do còn có tổ 9 người. Nếu thay mỗi tổ 10 người bằng một tổ 9 người thì mỗi lần thay bớt được : 10 – 9 =1 Vậy số tổ có 9 người là 34 : 1 = 34 ( tổ) Số tổ có 10 người là 40 – 34 = 6 (tổ) Bài 8: Một đội bóng thi đấu 25 trận, chỉ có thắng và hòa, mỗi trận thắng được 3 điểm, mỗi trận hòa được 1 điểm, kết quả đội đó được 59 điểm. Tính số trận thắng, số trận hòa của độ bóng. HD giải Giả sử cả 25 trận đều thắng. Khi dó số diểm đội đó có được là : 25 . 3 = 75 (điểm) So với bài ra thừa ra 75 – 59 = 16 ( điểm) –> là do còn có trận hòa Chênh lệch điểm số của trận thắng và trận hòa là : 3-1 = 2 Như vậy nếu thay mỗi trận thắng bằng một trận hòa thì mỗi lần thay giảm được 2 điểm => Số trận hòa là 16 : 2 = 8 ( trận) Số trận thắng là 25 – 8 = 17 ( trận) [...]... toàn chữ số 2 */ Bài toán trên vẫn đúng nếu thay số 2 bằng bất cứ số nào Bài 6: Cho dãy số : 10; 102; 103; …; 1020 Chứng minh rằng tồn tại một số chia cho 19 dư 1 HD giải: Dãy số 10; 102; 103; …; 1020 (1) có tất cả 20 số Khi chia mỗi số trong dãy cho 19 ta được một trong cácsố dư: 0; 1; 2; …; 18 Có 20 số mà chỉ có 19 số dư Do đó theo Điriclet tồn tại hai số có cùng số dư Giả sử hai số đó là 10m và 10n... 11 số tự nhiên bất kì bao giờ cũng có ít nhất hai số có chữ số tận cùng giống nhau HD giải: Lấy 11 số tự nhiên bất kỳ Khi chia cácsố này cho 10 sẽ có 1 trong cácsố dư: 0; 1; … ; 9 Có 11 số mà chỉ có 10 số dư => Luôn tồn tại hai số cùng dư khi chia cho 10 Hiệu của hai số này chia hết cho 10 => Hai số này phải có chữ só tạn cùng giống nhau Bài 5: Chứng minh rằng tồn tại một bội của 13 gồm toàn chữ số. .. Theo bài ra, có 6 số mà chỉ có 5 số dư => Tồn tại ít nhất 2 số có cùng số dư => Hiệu của 2 số đó chia hết cho 5 Bài 3: Chứng tỏ rằng tồn tại một bội của 1989 được viết bởi toàncác chữ số 1 và 0 HD giải: Xét dãy số: 1; 11; 111; …; 11 … 111 1990 cs 1 Có 1990 số mà chỉ có 1989 số dư => Tồn tại hai số có cùng số dư trong phép chia cho 1989 Hiệu của hai số này chỉ gồm các chữ số 0 và 1 chia hết cho 1989 Bài... hiêu chia hết cho 8 HD giải: Một số lẻ khi chia cho 8 thì có 1 trong 4 số dư: 1; 3; 5; 7 Chia 4 số dư này thành 2 nhóm: Nhóm I: cácsố lẻ chia cho 8 dư 1 hoặc dư 7 Nhóm II: Cácsố lẻ chia cho 8 dư 3 hoặc dư 5 Theo bài ra, có ba số lẻ mà chỉ có hai nhóm số dư => Tồn tại hai số thuộc cùng một nhóm - Nếu hai số có cùng số dư thì hiệu của chúng chia hết cho 8 - Nếu hai số có số dư khác nhau thì tổng của chúng... 9: Cho ba số nguyên tố lớn hơn 3 Chứng minh rằng tồn tại hai số có tổng hoặc hiêu chia hết cho 12 HD giải: Một số nguyên tố lớn hơn 3 khi chia cho 12 thì số dư chỉ có thể là 1 trong 4 số: 1; 5; 7; 11 Ta chia 4 số dư này thành hai nhóm: Nhóm I: Số chia cho 12 dư 1 hoặc dư 11 Nhóm II: Số chia cho 12 dư 5 hoặc dư Theo bài ra có ba số nguyên tố mà chỉ có hai nhóm số dư Do đó luôn tồn tại hai số thuộc cùng... một nhóm - Nếu hai số có cùng số dư thì hiệu của chúng chia hết cho 12 - Nếu hai số có số dư khác nhau thì tổng của chúng chia hết cho 12 Bài 10: Cho năm số tự nhiên lẻ bất kì, chứng minh rằng ta luôn chọn được bốn số có tổng chia hết cho 4 HD giải: Một số lẻ chia cho 4 thì số dư chỉ có thể là 1 hoặc 3, nghĩa là số lẻ chỉ có 1 trong 2 dạng: 4k + 1 hoặc 4k + 3 - Nếu có ít nhất bốn số thuộc cùng một dạng... thuộc cùng một dạng thì tổng của bốn số đó chia hết cho 4 - Nếu không như vậy thì mỗi dạng ít nhất có 2 số; ta chọn 2 số ở dạng này và hai số ở dạng kia thì tổng của chúng chia hết cho 4 Bài 11: Trong một lớp có 33 học sinh Tỏng số tuổi của chúng là 430 Liệu có thể tìm được 20 học sinh mà tổng số tuổi của chúng lớn hơn 260 không HD giải: Giả sử tổng số tuổi của 20 học sinh không lớn hơn 260 thì trung... 13 học sinh nhỏ thuổi hơn Tổng số tuổi của chúng không quá: 13.13 = 169 (Tuổi) Khi đó tổng số tuổi của cả lớp không vượt quá: 260 + 169 = 429 (Tuổi) < 430 (Tuổi) theo bài ra Vậy có thể chọn được 20 học sinh mà tổng số tuổi của chúng lớn hơn 260 Bài 12: Chứng minh rằng trong 8 số tự nhiên có 3 chữ số bao giờ cũng chọn được 2 số mà khi viết liền nhau được một số có sáu chữ số và chia hết cho 7 HD giải: ... +1 con thỏ trở lên VD1: Một lớp học có 40 học sinh Chứng minh rằng có ít nhất 4 học sinh có tháng sinh giống nhau Giải Một năm có 12 tháng Ta phân chia 40 học sinh vào 12 tháng ấy Nếu mỗi tháng không quá 3 học sinh được sinh ra thì sốhọc sinh không quá 3.12 = 36 Mà 36 < 40, vô lý Vậy tồn tại một tháng có ít nhất 4 học sinh trùng tháng sinh ( trong bài này 40 thỏ là 40 học sinh, 12 lồng là 12 tên tháng)... các gói kẹo bằng các gói bánh theo quy luật thay 6 gói kẹo bằng 5 gói bánh Mỗi lần thay như thế tổng thể tích các gói không thay đổi, số gói bớt đi 6-5 = 1 ( gói) Số lần thay: 2 : 1 =2 ( lần) Vậy số gói bánh trong hộp là : 2.5 = 10 (gói) Số gói kẹo trong hộp là: 28 – 10 = 18 ( gói) Giá tiền một gói bánh là: 36 000 : 10 = 3 600 đ, Giá tiền một gói kẹo là : 36 000 : 18 = 2 000 đ, IV/ TOÁNGIẢI BẰNG CÁCH . đề MỘT SỐ PHƯƠNG PHÁP GIẢI TOÁN SỐ HỌC I/ PHƯƠNG PHÁP DÙNG SƠ ĐỒ ĐOẠN THẲNG */ Sơ đồ đoạn thẳng là hình ảnh trực quan biểu diễn mối quan hệ giữa các đại. bằng 2 số lượng chênh lệch nhau Để giải các bài toán, ta đưa ra các giả thiết mới nhằm chuyển bài toán về các bài toán quen thuộc đã biết cách giải hoặc