SKKN HƯỚNG dẫn học SINH TIẾP cận NHÓM bài TOÁN TRẮC NGHIỆM TRÊN TRƯỜNG số PHỨC được PHÁT TRIỄN từ một số bài TOÁN cực TRỊ HÌNH học TRONG mặt PHẲNG image marked
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
293,4 KB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT THỌ XUÂN SÁNG KIẾN KINH NGHIỆM HƯỚNG DẪN HỌC SINH TIẾP CẬN NHĨM BÀI TỐN TRẮC NGHIỆM TRONG TRƯỜNG SỐ PHỨC ĐƯỢC PHÁT TRIỄN TỪ MỘT SỐ BÀI TOÁN CỰC TRỊ HÌNH HỌC TRONG MẶT PHẲNG Người thực hiện: Lê Quang Vũ Chức vụ: Giáo viên SKKN thuộc lĩnh vực (mơn): Tốn THANH HỐ, NĂM 2017 MỤC LỤC Mở đầu Trang 2 Nội dung sáng kiến…… Trang 2.1 Cơ sỡ lý luận SKKN .Trang 2.2 Thực trạng vấn đề trước áp dụng SKKN Trang 2.3 Các sáng kiến kinh nghiệm để giải vấn đề Trang 2.3.1 Các toán cực trị liên quan đến đường thẳng ……… Trang 2.3.2 Các toán cực trị liên quan đến đường tròn Trang 10 2.3.3 Các toán cực trị liên quan đến đường E-lip Trang 18 2.4 Hiệu SKKN hoạt động giáo dục, với thân, đồng nghiệp nhà trường Trang 19 Kết luận, kiến nghị………………… Trang 19 1 Mở đầu 1.1 Lí chọn đề tài Từ năm học 2016-2017, kỳ thi trung học phổ thông quốc gia, đề thi mơn tốn thay đổi từ hình thức tự luận sang hình thức trắc nghiệm khách quan Chính điều tạo chuyển biến lớn dạy học nhà trường Để đạt điểm số cao kỳ thi này, học sinh không cần nắm vững kiến thức bản, làm thục dạng tốn quan trọng mà cần có khả logic cao để tiếp cận vấn đề cách nhanh nhất, chọn cách giải nhanh đến đáp án Đây thực thách thức lớn Trong q trình giảng dạy, ơn thi, làm đề tơi phát rằng: nhiều tốn khó số phức xây dựng sở số tốn cực trị hình học mặt phẳng, học sinh tiếp cận theo hướng đại số túy tính tốn khó giải vấn đề thời gian ngắn Chính lý nên tổng hợp kinh nghiệm trình giảng dạy mình, sưu tầm dạng điển hình hay gặp đề thi để viết thành tài liệu: HƯỚNG DẪN HỌC SINH TIẾP CẬN NHĨM BÀI TỐN TRẮC NGHIỆM TRÊN TRƯỜNG SỐ PHỨC ĐƯỢC PHÁT TRIỄN TỪ MỘT SỐ BÀI TỐN CỰC TRỊ HÌNH HỌC TRONG MẶT PHẲNG 1.2 Mục đích nghiên cứu Tơi chọn đề tài sáng kiến kinh nghiệm trước hết nhằm mục đích tạo tài liệu tham khảo nhỏ giúp em học sinh giỏi nhà trường có thêm phương pháp tiếp cận nhanh hiệu gặp toán cực trị tập số phức Sau khuyến khích em dựa vào tính chất cực trị hình học học để sáng tạo tập hay tập số phức, qua giúp em phát triễn tư logic, tổng hợp phần, chương học để chọn nhanh hướng tiếp cận câu hỏi trắc nghiệm mức độ vận dụng đề thi 1.3 Đối tượng nghiên cứu Đối tượng nghiên cứu đề tài chủ yếu tập trung vào mối quan hệ số phức với hình học tọa độ mặt phẳng, qua chọn lọc số tốn cực trị đặc trưng hình học chuyển hóa thành tốn cực trị tập số phức 1.4 Phương pháp nghiên cứu Để giúp học sinh có cách giải phù hợp với toán cực trị số phức, trước hết giáo viên cần u cầu học sinh ơn tập kiến thức hình học liên quan Đặc biệt với riêng chuyên đề giáo viên phải yêu cầu học sinh nắm vững mối quan hệ số phức với hình học tọa độ, cơng thức chuyển đổi từ số phức sang hình học Sau giáo viên chọn số tốn điển hình, kiện, yêu cầu thường gặp để học sinh luyện tập nhiều, tạo “phản xạ” cho em gặp loại toán Bước cuối yêu cầu em sáng tạo thêm đề tốn từ tốn điển hình từ toán khác mà em gặp 2 Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.1.1 Một số phép tốn mở rộng mơ-đun số phức số phức liên hợp Cho hai số phức z , w Ta chứng minh tính chất sau:[1]1 zw zw z z zw zw z z z z.w z.w z.w z w z z w w z z w w z n zn zn z n 2.1.2 Biểu diễn hình học số phức - Biểu diễn hình học số phức z x yi với x, y mặt phẳng tọa độ điểm M x; y Khi z OM - Biểu diễn hình học hai số phức z z hai điểm đối xứng qua trục Ox nên quỹ tích điểm biểu diễn hai số phức z z hình C , C ' hai hình đối xứng qua trục Ox z1 z2 AB z z OA OB 2OM - Nếu điểm biểu diễn hai số phức z1 , z2 A, B với M trung điểm đoạn AB - Cho điểm biểu diễn hai số phức z1 , z2 A, B Số phức z thay đổi thỏa mãn z z1 z z2 quỹ tích điểm biểu diễn số phức z trung trực đoạn AB - Cho điểm biểu diễn hai số phức z1 , z2 A, B Số phức z thay đổi thỏa mãn z z1 z z2 quỹ tích điểm biểu diễn số phức z đường thẳng - Cho z0 số phức khơng đổi có điểm biểu diễn I , số phức z thay đổi thỏa mãn z z0 R quỹ tích điểm biểu diễn số phức z đường tròn tâm I bán kính R - Cho z0 số phức khơng đổi có điểm biểu diễn I , số phức z thay đổi thỏa mãn z z0 R quỹ tích điểm biểu diễn số phức z miền đường tròn tâm I bán kính R - Cho z0 số phức khơng đổi có điểm biểu diễn I , số phức z thay đổi thỏa mãn z z0 R quỹ tích điểm biểu diễn số phức z miền ngồi đường tròn tâm I bán kính R [1] Kết tham khảo trang 12, 13, 14 sách “HÀM BIẾN PHỨC” tác giả Nguyễn Văn Khuê- Lê Mậu Hải - Cho hai số phức z1 , z2 không đổi có điểm biểu diễn hai điểm A, B Một số phức z thay đổi thỏa mãn z z1 z z2 a Khi + Nếu z1 z2 a quỹ tích điểm biểu diễn số phức z đường E-lip nhận A, B làm hai tiêu điểm độ dài trục lớn a + Nếu z1 z2 a quỹ tích điểm biểu diễn số phức z đoạn thẳng AB 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Hiện gặp dạng toán cực trị tập số phức phát triễn từ toán cực trị hình học thường làm học sinh kể học sinh giỏi lúng túng từ khâu phát nút thắt mấu chốt cách xử lý Đa số em không nhận “bẫy” đề bài, sa đà vào tính tốn, gây thời gian mà thường không thu kết mong đợi Khi gặp toán vấn đề trên, học sinh nhiều thời gian để biến đổi toán Một số học sinh lực tư hạn chế chưa biết cách phối hợp tư hình học tính tốn đại số Một thực tế nhiều học sinh làm toán loại chương hình học làm thành thạo chương số phức với ngôn từ, giả thiết khác em lại khơng phát vấn đề cốt lõi, quen thuộc mà lúng túng gặp tốn Chính người dạy phải hướng dẫn học sinh tìm chất vấn đề cách giải đơn giản, để thuận lợi kết thúc toán 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề 2.3.1 Các toán cực trị liên quan đến đường thẳng, đoạn thẳng Bài toán 1: Trong mặt phẳng tọa độ Oxy , cho điểm A đường thẳng d Điểm M chạy đường thẳng d cho độ dài đoạn AM nhỏ Khi tìm vị trí điểm M tính độ dài AM a Hướng dẫn giải: A d(M,d) (d) M H Gọi H hình chiếu vng góc điểm A lên đường thẳng d Khi AM AH , nên độ dài đoạn AM nhỏ M hình chiếu vng góc điểm A lên đường thẳng d AM AH d M , d b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đường thẳng - Tạo kết luận: Tìm giá trị nhỏ mô-đun z z0 với z0 số phức biết - Cách giải quyết: Gọi điểm biểu diễn số phức z , z0 M , A Gọi đường thẳng biểu diễn quỹ tích số phức z d Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại ta tạo điều kiện ràng buộc số phức z để quỹ tích biểu diễn đường thẳng Điều kiện kiểu đa dạng, mà hay gặp kể đến: + Cho số phức z x yi ( x, y ) cho ax by c 0(a, b, c ) + Cho số phức z thỏa mãn z z1 z z2 với z1 , z hai số phức biết c Ví dụ minh họa: Ví dụ 1: Cho số phức z có điểm biểu diễn nằm đường thằng d : 3x y Tính giá trị nhỏ z A B C D Gợi ý: Gọi M điểm biểu diễn số phức z Min z OM d O; d Ví dụ 2: Cho số phức z , w thỏa mãn z 2i z 4i , w iz Giá trị nhỏ w A B C D 2 Gợi ý: Gọi A 2;2 , B 0;4 M điểm biểu diễn số phức z Từ đề ta có: MA MB , hay quỹ tích điểm M đường trung trực đoạn AB Quỹ tích điểm M đường thẳng d : x y i Mà w iz i z z i IM với I 0;1 Min w d ( I ; d ) Ví dụ 3: Cho số phức z khơng phải số ảo thỏa điều kiện z z z 2i Giá trị nhỏ z i A B C D z 2i z Gợi ý: z z z 2i z 2i z 2i z z 2i z 2i (l ) Như toán trở dạng giống Ví dụ Ví dụ 4: Cho số phức z thỏa mãn z 4i z 2i Giá trị nhỏ z i A 10 B C 10 D 10 z 2i z 2i z 2i Gợi ý: Bài toán trở thành: Cho số phức z i z i z i z thỏa mãn z 4i z 2i Tìm giá trị nhỏ z i Như toán trở dạng giống Ví dụ Bài tốn 2: Trong mặt phẳng tọa độ Oxy , cho hai điểm phân biệt A , B đường thẳng d Điểm M chạy đường thẳng d cho tổng độ dài đoạn AM BM nhỏ Khi tìm vị trí điểm M tính AM BM a Hướng dẫn giải: Ta xét hai trường hợp +) Trường hợp : hai điểm A , B nằm hai phía đường thẳng d A (d) D M B Ta có MA MB AB nên MA MB min AB , đạt M AB (d ) +) Trường hợp : hai điểm A , B phía đường thẳng d B A (d) D M A' Gọi điểm A ' điểm đối xứng điểm A qua đường thẳng d Khi MA MA ' MA MB MA ' MB A ' B nên MA MB min A ' B , đạt M A ' B (d ) b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đường thẳng - Tạo kết luận: Tìm giá trị nhỏ mô-đun z z1 z z2 với z1 , z số phức biết - Cách giải quyết: Gọi điểm biểu diễn số phức z , z1 , z2 M , A, B Gọi đường thẳng biểu diễn quỹ tích số phức z d Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại phát nhanh yếu tố hình học giả thiết kết luận, vẽ yếu tố hình học lên hệ trục tọa độ để xác định nhanh vị trí A, B với đường thẳng d c Ví dụ minh họa: Ví dụ 5: Cho số phức z thỏa mãn z z Giá trị nhỏ z 4i z 6i A 10 B 13 C D 10 Gợi ý: Gọi M điểm biểu diễn số phức z , từ điều kiện z z suy quỹ tích điểm M trục Oy Đặt A 2;4 , B 4;6 A, B nằm hai phía trục Oy Khi z 4i z 6i MA MB AB 10 Ví dụ 6: Cho số phức z thỏa mãn z 4i z 4i Giá trị nhỏ z 4i z i A B 13 C 41 D 10 Gợi ý: Gọi M điểm biểu diễn số phức z , từ z 4i z 4i 2i z 2i suy quỹ tích điểm M đường thẳng 2 d : x y Đặt A 1;4 , B 1;1 A, B nằm phía với z đường thẳng d Điểm A ' 3; 4 điểm đối xứng điểm A qua đường thẳng d Khi z 4i z i MA MB MA ' MB A ' B 41 Bài toán 3: Trong mặt phẳng tọa độ Oxy , cho điểm I đoạn thẳng AB Điểm M chạy đoạn thẳng AB cho độ dài đoạn IM nhỏ Khi tìm vị trí điểm M tính độ dài IM a Hướng dẫn giải: Gọi H hình chiếu vng góc điểm I lên đường thẳng AB Ta xét hai trường hợp Trường hợp 1: điểm H nằm đoạn AB I M A H B Dễ dàng thấy IM IH IM max max IA; IB Trường hợp 2: điểm H nằm đoạn AB I A M B H Dễ dàng thấy IM IA; IB IM max max IA; IB b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đoạn thẳng - Tạo kết luận: Tìm giá trị nhỏ nhất, lớn mô-đun z z0 với z0 số phức biết - Cách giải quyết: Gọi điểm biểu diễn số phức z , z0 M , I Gọi đoạn thẳng biểu diễn quỹ tích số phức z AB Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại ta tạo điều kiện ràng buộc số phức z để quỹ tích biểu diễn đoạn thẳng Điều kiện kiểu chủ yếu dựa vào tính chất: điểm M thuộc đoạn thẳng AB MA MB AB Tính chất viết theo ngơn ngữ số phức có số dạng sau: + Cho số phức z thỏa mãn z z1 z z2 a với z1 , z hai số phức biết z1 z a (Đây dạng suy biến Elip trình bày phần sở lý thuyết) + Cho số phức z thỏa mãn z z1 z z2 nhỏ với z1 , z hai số phức biết Hoặc tạo quỹ tích điểm biểu diễn z phần đường thẳng bị giới hạn miền đường tròn, elip Chẳng hạn như: + Cho số phức bị ràng buộc điều kiện để quỹ tích đường thẳng, điều kiện lại z z r z z1 z z2 2a c Ví dụ minh họa: Ví dụ 7: Xét số phức z thỏa mãn z i z 7i Gọi m , M giá trị nhỏ giá trị lớn z i Tính P m M B P A P 13 73 73 73 Gợi ý: Gọi M điểm biểu diễn số phức z , gọi A 2;1 , B 4;7 Từ giả thiết D P C P 73 z i z 7i MA MB AB Quỹ tích điểm M đoạn thẳng AB Gọi I 1; 1 z i IM Vẽ hình trực quan dễ kiểm tra hình chiếu I lên đường thẳng AB nằm đoạn AB Lại có: IA 13, IB 73, d ( I ; AB) 5 73 P 2 Ví dụ 8: Xét số phức z thỏa mãn z 2i z 2i nhỏ Gọi m , M giá trị nhỏ giá trị lớn z 4i Tính P A P B P 2 M m C P D P Gợi ý: Gọi M điểm biểu diễn số phức z , gọi A 1;2 , B 2; 2 Ta có z 2i z 2i MA MB AB , nghĩa z 2i z 2i nhỏ quỹ tích điểm M đoạn thẳng AB Gọi I 0; z 4i IM Vẽ hình trực quan dễ kiểm tra hình chiếu I lên đường thẳng AB nằm ngồi đoạn AB Lại có: IA 5, IB 10 P 2 z z 8i Tìm giá trị nhỏ z 4i z Ví dụ 9: Xét số phức z thỏa mãn A B C D Gợi ý: Gọi M điểm biểu diễn số phức z , z z 8i nên M thuộc đường thẳng d : 2x y 10 , mà z nên M thuộc miền đường tròn C : x y 25 Lại có d cắt C hai điểm phân biệt A(3;4), B(5;0) nên quỹ tích điểm M đoạn thẳng AB Gọi I 0; z 4i IM , vẽ hình trực quan thấy hình chiếu vng góc điểm I lên đường thẳng d nằm đoạn AB mà IA 41, IB nên z 4i 2.3.2 Các toán cực trị liên quan đến đường tròn Bài tốn 4: Trong mặt phẳng tọa độ Oxy cho điểm A đường tròn C có tâm I bán kính R Điểm M thay đổi đường tròn C Xác định vị trí điểm M để độ dài đoạn AM đạt giá trị lớn nhất, giá trị nhỏ tính giá trị a Hướng dẫn giải: Ta xét ba trường hợp Trường hợp 1: điểm A nằm miền ngồi đường tròn C (C) M R C I B A AM AB AI R AM max AC AI R Trường hợp 2: điểm A nằm đường tròn C (C) M R A B I C AM AM max AC 2R Trường hợp 3: điểm A nằm miền đường tròn C 10 (C) R B A C I M AM AB R AI AM max AC AI R b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đường tròn - Tạo kết luận: Tìm giá trị nhỏ mô-đun z z0 với z0 số phức biết - Cách giải quyết: Gọi điểm biểu diễn số phức z , z0 M , A Gọi đường tròn biểu diễn quỹ tích số phức z C Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại ta tạo điều kiện ràng buộc số phức z để quỹ tích biểu diễn đường tròn Điều kiện kiểu đa dạng, mà hay gặp kể đến: + Cho số phức z thỏa mãn z z0 R với z0 hai số phức biết + Cho số phức z thỏa mãn z z1 k z z2 với z1 , z hai số phức biết k c Ví dụ minh họa: Ví dụ 10: Cho số phức z có z số phức w z 3i có modun nhỏ lớn A B C D Gợi ý: Gọi M điểm biểu diễn số phức z Vì z nên quỹ tích điểm M đường tròn C tâm O bán kính R Đặt A(0; 3) w z 3i AM Dễ thấy điểm A nằm ngồi đường tròn C nên w AM AO R w max AM max AO R Ví dụ 11: Cho số phức z thoả z 4i w z i Khi w có giá trị lớn là: A 16 74 B 130 C 74 D 130 11 Gợi ý: Gọi M điểm biểu diễn số phức z Vì z 4i nên quỹ tích 1 2 điểm M đường tròn C tâm I 3; 4 bán kính R Đặt A( ; ) w 2z i z C nên i 2AM Dễ thấy điểm A nằm ngồi đường tròn 2 w max AM max 2( AI R) 130 Ví dụ 12: Cho số phức z , tìm giá trị lớn | z | biết z thoả mãn điều kiện 2 3i z 1 2i A B C D Gợi ý : Gọi M điểm biểu diễn số phức z z OM Theo : 2 3i 2 3i 2i z 1 z z i nên quỹ tích điểm M 2i 2i 2 3i đường tròn C tâm I 0; 1 bán kính R Dễ thấy điểm O nằm đường tròn C nên z max R Ví dụ 13: Cho số phức z thỏa mãn z z z 2i a b Tính a b A B 2 C D Gợi ý: Đặt z x yi với x, y Từ z z x 3 y x y x y 6x x 3 y 18 z Gọi M điểm biểu diễn số phức z quỹ tích M đường tròn tâm I (3;0) , bán kính R Đặt A ; 2 z 2i AM Dễ thấy điểm A nằm miền đường tròn C nên AM R AI a b 2 Bài toán 5: Trong mặt phẳng tọa độ Oxy cho đường thẳng (d ) đường tròn C có tâm I bán kính R khơng có điểm chung Điểm M thay đổi đường tròn C , điểm N thay đổi đường thẳng (d ) Xác định vị trí hai điểm M , N để độ dài đoạn MN giá trị nhỏ tính giá trị 12 a Hướng dẫn giải: I M R A N H MN AH d ( I , d ) R b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z1 cho quỹ tích điểm biểu diễn đường tròn, tạo điều kiện ràng buộc số phức z2 cho quỹ tích điểm biểu diễn đường thẳng - Tạo kết luận: Tìm giá trị nhỏ mô-đun z1 z2 - Cách giải quyết: Gọi điểm biểu diễn số phức z , z2 M , N Gọi đường tròn biểu diễn quỹ tích số phức z1 C , đường thẳng biểu diễn số phức z2 d Khi tốn số phức trở tốn hình học nêu - Nhận xét: Khi học sinh nắm vững tốn dễ dàng hình dung đường hình học để giải tốn c Ví dụ minh họa: z1 i z1 Tìm giá trị nhỏ z i Ví dụ 14: Xét hai số phức z1 , z2 thỏa mãn z1 z2 A B C 1 D Gợi ý: Gọi M , N điểm biểu diễn hai số phức z1 , z2 Theo z1 i z1 , suy quỹ tích điểm M đường thẳng d : x y z i quỹ tích điểm N đường tròn C tâm I 1;1 có bán kính R Vẽ hình trực quan dễ thấy C d khơng có điểm chung, mà z1 z2 MN nên z1 z2 MN d I , d R 13 Bài toán 6: Trong mặt phẳng tọa độ Oxy cho đường tròn C có tâm I bán kính R Đoạn AB đường kính C Điểm M thay đổi đường tròn C Xác định vị trí điểm M để tổng độ dài k MA l.MB (với k l ) đạt giá trị nhỏ tính giá trị a Hướng dẫn giải: M A R I B Ta có : k l kMA lMB l ( MA MB) lAB , dấu xảy M A b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đường tròn - Tạo kết luận: Tìm giá trị nhỏ mô-đun k z z1 l z z2 với z1 , z2 hai số phức biết mà đoạn nối hai điểm biểu diễn chúng đường kính đường tròn biểu diễn số phức z - Cách giải quyết: Gọi điểm biểu diễn số phức z , z1 , z2 M , A, B Gọi đường tròn biểu diễn quỹ tích số phức z C Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại chọn z1 , z2 cho đoạn nối điểm biểu diễn chúng đường kính đường tròn c Ví dụ minh họa: Ví dụ 15: Cho số phức z thỏa mãn z Tìm giá trị nhỏ biểu thức T z 1 z 1 A T B T C T D MinT Gợi ý: Gọi M điểm biễu diễn số phức z Theo z nên quỹ tích điểm M đường tròn C tâm O bán kính R Đặt A 1;0 , B 1;0 , vẽ hình trực quan dễ thấy AB đường kính đường tròn C Khi 14 T z z MA MB MA MB AB , dấu xảy M B Suy T Bài toán 7: Trong mặt phẳng tọa độ Oxy cho đường tròn C có tâm I bán kính R Đoạn AB cố định nhận điểm I làm trung điểm Điểm M thay đổi đường tròn C Xác định vị trí điểm M để tổng độ dài k MA l.MB (với k 0, l ) đạt giá trị lớn tính giá trị a Hướng dẫn giải: M A I B MA2 MB AB Theo cơng thức đường trung tuyến ta có MI AB MA2 MB MI a const Lại có: k MA l.MB k l MA2 MB k l a , dấu xảy MA MB k k2 l2 MA MB ( ) MB k l a , hay M giao điểm k l l l l a đường (C ) với đường tròn tâm B bán kính k2 l2 b Cách tạo giải toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đường tròn - Tạo kết luận: Tìm giá trị nhỏ mô-đun k z z1 l z z2 với z1 , z2 hai số phức biết mà đoạn nối hai điểm biểu diễn chúng nhận tâm đường tròn biểu diễn số phức z làm trung điểm - Cách giải quyết: Gọi điểm biểu diễn số phức z , z1 , z2 M , A, B Gọi đường tròn biểu diễn quỹ tích số phức z C Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại chọn z1 , z2 cho đoạn nối điểm biểu diễn chúng đường kính đường tròn C ; đồng thời hai số 15 thực k , l phải chọn cẩn thận để đường tròn tâm B bán kính 2Rl k2 l2 đường tròn (C ) có điểm chung, nghĩa đánh giá bất đẳng thức lời giải xảy dấu c Ví dụ minh họa: Ví dụ 16: Cho số phức z thỏa mãn z Tìm giá trị lớn biểu thức T z 1 z 1 A max T B max T 10 C max T D max T Gợi ý: Gọi M điểm biễu diễn số phức z Theo z nên quỹ tích điểm M đường tròn C tâm O bán kính R Đặt A 1;0 , B 1;0 , vẽ hình trực quan dễ thấy AB nhận O làm trung điểm nên MAB ta có MO MA2 MB AB AB MA2 MB MO Khi T z z MA MB 12 22 MA2 MB , dấu xảy MB 2MA MA A giao điểm đường tròn C với đường tròn tâm A bán kính Suy max T Bài toán 8: Trong mặt phẳng tọa độ Oxy cho đường tròn C có tâm I bán kính R Điểm M cố định nằm miền đường tròn; hai điểm A, B thay đổi C cho ba điểm M , A, B thẳng hàng Xác định vị trí hai điểm A, B để tổng độ dài k MA l.MB (với k 0, l ) giá trị nhỏ tính giá trị a Hướng dẫn giải: I M A B Ta có tích MA.MB độ lớn phương tích điểm M với đường tròn C , suy MA.MB R MI Nên k MA l.MB klMA.MB kl ( R MI ) , dấu 16 xảy kMA lMB kl ( R MI ) MA giao điểm đường tròn tâm M bán kính l ( R MI ) hay A k l ( R MI ) với đường tròn C k b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc hai số phức z1 , z2 cho quỹ tích điểm biểu diễn chúng đường tròn Chọn số phức z0 có điểm biểu diễn nằm miền đường tròn biểu diễn z1 , z2 Tạo điều kiện ràng buộc để ba điểm biểu diễn z0 , z1 , z2 thẳng hàng - Tạo kết luận: Tìm giá trị nhỏ tổng mô-đun k z0 z1 l z0 z2 - Cách giải quyết: Gọi điểm biểu diễn số phức z0 , z1 , z2 M , A, B Gọi đường tròn biểu diễn quỹ tích hai số phức z1 , z2 C Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại tạo điều kiện ràng buộc để ba điểm biểu diễn ba số phức z0 , z1 , z2 thẳng hàng; đồng thời hai số thực k , l số phức z0 phải chọn cẩn thận để đường tròn tâm M bán kính l ( R MI ) đường tròn C có điểm chung, nghĩa đánh giá bất đẳng k thức lời giải xảy dấu Điều kiện ràng buộc để ba điểm biểu diễn ba số phức z0 , z1 , z2 thẳng hàng ta thường sử dụng z1 z0 z2 z0 z1 z2 c Ví dụ minh họa: z1 i z2 i Ví dụ 17: Cho hai số phức z1 , z2 thỏa mãn 1 Tìm z1 z2 z1 i z2 i giá trị nhỏ biểu thức T z1 i 2iz2 2i A T B T C T 2 D T Gợi ý: Gọi A, B điểm biểu diễn hai số phức z1 , z2 Theo z1 i z2 i , suy quỹ tích điểm A quỹ tích điểm B đường tròn C tâm 1 I 1;1 có bán kính R Đặt điểm M 1; , ta có 2 1 z1 z2 z1 i z2 i MA MB AB điểm M thuộc đoạn AB , 2 nên theo cơng thức phương tích ta có MA.MB R IM Lại có 17 T z1 i 2iz2 2i z1 i i i 2i z2 z1 z2 2i 2 T MA MB MA.MB , dấu xảy MA MB hay A, B giao điểm đường thẳng qua M vng góc với IM đường tròn C 2.3.3 Các toán cực trị liên quan tới E-lip Bài toán 9: Trong mặt phẳng tọa độ Oxy cho E-lip E có độ dài trục lớn 2a , độ dài trục bé 2b , tâm đối xứng I ; điểm M thay đổi E Xác định vị trí điểm M cho độ dài đoạn IM lớn nhất, nhỏ tính giá trị a Hướng dẫn giải: B M A' I A B' IM max IA IA ' a IM IB IB ' b b Cách tạo giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích điểm biểu diễn đường E-lip - Tạo kết luận: Tìm giá trị nhỏ mơ-đun z z0 với z0 số phức có điểm biểu diễn tâm E-lip - Cách giải quyết: Gọi điểm biểu diễn hai số phức z0 , z I , M Gọi đường E-lip biểu diễn quỹ tích số phức z E Khi tốn số phức trở tốn hình học nêu - Nhận xét: Điểm mấu chốt để tạo tập loại tạo điều kiện ràng buộc để quỹ tích điểm biểu diễn số phức z E-lip; đồng thời số phức z0 phải chọn cẩn thận để điểm biểu diễn tâm E-lip c Ví dụ minh họa: Ví dụ 18: Cho số phức z thỏa mãn z i z 3i 10 Gọi M , m giá trị lớn nhất, giá trị nhỏ z i Tính T M m 18 A T 40 B T 45 C T 10 D T 10 Gợi ý: Gọi M điểm biểu diễn số phức z Đặt A 2;1 , B 4; 3 AB Theo z i z 3i 10 MA MB 10 nên quỹ tích điểm M đường E-lip có hai tiêu điểm A, B , độ dài trục lớn 10 , tiêu cự ,độ dài trục bé Đặt I 3; 1 , dễ thấy I tâm E-lip z i IM z i IM 5, z i max IM max Suy T M m 45 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Trong q trình giảng dạy, tơi nhận thấy rằng: sau đưa hệ thống tập trên, học sinh biết vận dụng phương pháp linh hoạt vào toán khác nhau, từ đơn giản đến phức tạp Học sinh khơng tâm lý e ngại gặp toán Mặt khác, hiệu áp dụng tương đối cao, giải trở nên sáng sủa, ngắn gọn Hầu hết em vận dụng tốt giải nhanh câu hỏi trắc ngiệm loại Một hiệu mà nhận thấy học sinh sau đọc tài liệu nhìn tốn cực trị tập số phức với mắt “ bớt sợ” Những em khá, ham tìm tòi manh nha nghiên cứu tốn hình học khác để thử áp dụng cho toán cực trị khác Tuy phận học sinh kiến thức hạn chế nên chưa thấy điểm mạnh phương pháp, vận dụng chưa linh hoạt dạng đề khác Kết luận, kiến nghị 3.1 Kết luận: Trên số giải pháp triển khai áp dụng lớp 12A1 trường THPT Thọ Xuân thu nhiều kết khả quan kết học tập chương số phức học sinh 3.2 Kiến nghị: Hằng năm, sáng kiến kinh nghiệm có ứng dụng thực tiễn, thiết thực phục vụ cho nhiệm vụ nâng cao chất lượng giáo dục đào tạo, sáng kiến đổi phương pháp giảng dạy cần tập hợp kỷ yếu khoa học Sở GD& ĐT tạo điều kiện cho giáo viên, học sinh phụ huynh tham khảo 19 Tài liệu tham khảo Sách “ Hàm biến phức” tác giả Nguyễn Văn Khuê- Lê Mậu Hải- Nhà xuất đị học quốc gia Hà Nội năm 2001 Danh mục đề tài SKKN mà tác giả Hội đồng Cấp Sở GD&ĐT đánh giá đạt từ loại C trở lên SKKN: Hướng dẫn học sinh sử dụng điểm cố định họ đường thẳng để giải số tốn cực trị hình học - Giải C năm 2014 XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa, ngày 22 tháng 05 năm 2017 Tôi xin cam đoan SKKN viết, khơng chép nội dung người khác Lê Quang Vũ 20 ... nghiệm trình giảng dạy mình, sưu tầm dạng điển hình hay gặp đề thi để viết thành tài liệu: HƯỚNG DẪN HỌC SINH TIẾP CẬN NHĨM BÀI TỐN TRẮC NGHIỆM TRÊN TRƯỜNG SỐ PHỨC ĐƯỢC PHÁT TRIỄN TỪ MỘT SỐ BÀI... diễn số phức z đoạn thẳng AB 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Hiện gặp dạng toán cực trị tập số phức phát triễn từ tốn cực trị hình học thường làm học sinh kể học sinh. .. giải số toán cực trị tập số phức từ toán trên: - Tạo giả thiết: Tạo điều kiện ràng buộc số phức z cho quỹ tích đường thẳng - Tạo kết luận: Tìm giá trị nhỏ m - un z z0 với z0 số phức biết - Cách