1. Trang chủ
  2. » Tất cả

036_Đề HSG Toán 9_Bình Dương 2016-2017

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 297,01 KB

Nội dung

ĐỀ HỌC SINH GIỎI TỐN SGD BÌNH DƯƠNG NĂM HỌC:2016-2017 Câu 1: (5 điểm) a) Tìm tất ngiệm nguyên phương trình x  y  2017 b) Xác định số điện thoại THCS X thành phố Thủ Dầu Một, biết số dạng 82xxyy với xxyy số phương Câu 2: (4 điểm) Tam giác ABC nội tiếp đường tròn (O; R) , M  (O; R) Chứng minh rằng: MA2  MB2  MC  6R2 Câu 3: (3 điểm) a) Giải phương trình: x2   x2   3 9 x  1    ( x  y )      xy  b) Giải hệ phương trình:  ( x  y ) 1    49  2    x y   Câu 4: (3 điểm) a) Chứng minh với số a, b, c, d ta (a  c2 )(b2  d )  (ab  cd )2 b) Cho a, b  chứng minh rằng: a  b2  (4a  3b)(3a  4b) 25 Câu 5: (3 điểm) Cho tứ giác ABCD Gọi M , N , P, Q trung điểm AB, BC, CA, DA Chứng minh rằng: S ABCD  MP.NQ  ( AB  CD)( AD  BC ) Câu 6: (2,0 điểm) Cho đa giác lồi có 12 cạnh a) Tìm số đường chéo b) Tìm số tam giác có cạnh cạnh đa giác ? có: LỜI GIẢI ĐỀ HỌC SINH GIỎI TỐN SGD BÌNH DƯƠNG NĂM HỌC 2016-2017 Người giải đề: Triệu Tiến Tuấn Câu 1: (5 điểm) a) Tìm tất ngiệm nguyên phương trình x  y  2017 b) Xác định số điện thoại THCS X thành phố Thủ Dầu Một, biết số dạng 82xxyy với xxyy số phương Lời giải a) Phương trình: x  y  2017 ( x, y  0)  x  20172  y  4034 y Do x, y  Z  y  Z Vậy nghiệm tổng quát phương trình là: x  a2 ; y  (2017  a)2 b) Ta có: xxyy  11x0 y số phương nên x0 y 11  100 x  y 11  99 x  x  y 11  x  y  11  x  y 11   x  y  x  y    x  y  11 Ta có: xxyy  11x0 y  11(99x  x  y)  11(99x  11)  112 (9x  1)  x  số phương x7 y 4 Vậy xxyy  7744; xxyy  0000 Câu 2: (4 điểm) Tam giác ABC nội tiếp đường tròn (O; R) , M  (O; R) Chứng minh rằng: MA2  MB2  MC  6R2 Lời giải A Giả sử M  AC Dễ thấy: MA  MC  MB (trên MB lấy I cho MI  MC , ta chứng minh: IB  MA ) M K I Đặt: MA  x; MB  y;MC  y  x Ta có: H AM  BM  CM  x2  y  ( x  y)2  2( x2  y  xy) x C (1) Kẻ AH  BM  MH   AH  x Mà BH  MB  MH  y  BH  MB  MH  y  x x  AB  AH  BH  x  y  x  xy  x  y  xy (2) 4 Từ (1),(2)  AM  BM  CM  AB2  2( R 3)2  6R2 (dpcm) Câu 3: (3 điểm) a) Giải phương trình: x2   x2     x2  1    ( x  y )      xy  b) Giải hệ phương trình:  ( x  y ) 1    49  2    x y   Lời giải a) Phương trình: x2   x2     x2  3  x  9  x   Điều kiện:  x   3   x   1 O B x2  3  1   x2     3   x   1 3   x   3   x   3   x    11  3   x     x   x  2   x2   x2 3    x2  x2      x2  2 2 2 x 2 11 (tmdk )    ( x  y )      xy  b) Hệ phương trình:  dk : x, y    ( x  y )   49  2    x y   1  1  x  y 5 x  y      x y x y     2  x  y    49  x     y    53      x2 y x  y   x y Đặt x   a; y   b ta được: a  b  a   b b  7; a  2    2 a  b  53 2b  10b  28  b  2; a    x   2  x  1 a  2  x     73 b  y   y   y     73  x  x  a  x     b  2  y   2  y  1  y  Câu 4: (3 điểm) a) Chứng minh với số a, b, c, d ta (a  c2 )(b2  d )  (ab  cd )2 b) Cho a, b  chứng minh rằng: a  b2  (4a  3b)(3a  4b) 25 ln có: 1 Lời giải a) Ta có: (a  c )(b  d )  (ab  cd )  a 2b  a d  c 2b  c d  a 2b  c d  2abcd  a d  c 2b  2abcd    ad  cb   b) Ta có: a  b2   25a  25b  (4a  3b)(3a  4b) (4a  3b)(3a  4b) 25  13(a  b )  25ab  13(a  b)  ab  Dấu “=” không xảy ra, vậy: Câu 5: (3 điểm) Cho tứ giác ABCD AB, BC, CA, DA a  b2  (4a  3b)(3a  4b) 25 Gọi M , N , P, Q Chứng trung điểm minh rằng: S ABCD  MP.NQ  ( AB  CD)( AD  BC ) Lời giải Ta có: MP.NQ  2SMNPQ  S ABCD A Gọi R trung điểm AC , ta có : NR  1 AB; QR  CD 2 M Suy ra: NQ  NR  QR  ( AB  CD) Q R Tương tự: PM  ( AD  BC )  MP NQ  ( AB  CD)( AD  BC )  S ABCD  MP.NQ  ( AB  CD)( AD  BC ) B N D P Câu 6: (2 điểm) Cho đa giác lồi có 12 cạnh a) Tìm số đường chéo b) Tìm số tam giác có cạnh cạnh đa giác ? Lời giải a) Số đường chéo đa giác là: 12 12  3  54 C b) Nhận thấy với cạnh tam giác, ta lập 10 tam giác mà tam giác thỏa mãn đề mà đa giác ban đầu có 12 cạnh nên số tam giác thỏa mãn đề 10.12  120 Tuy nhiên tính theo cách tam giác mà có cạnh cạnh kề đa giác cho tính lần Ta có số tam giác tính lần 12 tam giác nên số tam giác thỏa mãn đề thực chất là: 120 12  108 tam giác ...LỜI GIẢI ĐỀ HỌC SINH GIỎI TỐN SGD BÌNH DƯƠNG NĂM HỌC 2016-2017 Người giải đề: Triệu Tiến Tuấn Câu 1: (5 điểm) a) Tìm tất ngiệm nguyên phương trình

Ngày đăng: 17/07/2019, 18:51

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w