SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNGTHÁP KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH NĂM HỌC 2007-2008. Môn thi : Toán. Ngày thi : 14/10/2007. Thời gian làm bài : 180 phút (không kể phát đề). (Đề thi gồm có 01 trang). Bài 1: (5 điểm). a) Tìm tất cả các số nguyên m sao cho phương trình x 2 +(m 2 -m)x - m 3 +1= 0 có một nghiệm nguyên . b) Giải bất phương trình Bài 2: (5 điểm). a) Giải phương trình 4sin 2 5x-4sin 2 x+2(sin6x+sin4x)+1=0 b) Cho các số thực x 1 ,x 2, … ,x n thỏa mãn sin 2 x 1 +2sin 2 x 2 +…+nsin 2 x n = a ,với n là số nguyên dương , a là số thực cho trước , .Xác đònh các giá trò của x 1 ,x 2, … ,x n sao cho tổng S= sin2x 1 +2sin2x 2 +…+nsin2x n đạt giá trò lớn nhất và tìm giá trò lớn nhất này theo a và n. Bài 3: (4 điểm). a) Cho ba số thực a,b,c thỏa abc=1 .Chứng minh : b) Cho tam giác ABC nhọn thỏa điều kiện Chứng minh rằng ABC là tam giác cân. Bài 4: (2 điểm). Cho tam giác ABC ,trên các cạnh BC,CA,AB lần lượt lấy các điểm A’,B’,C’ sao cho AA’,BB’ và CC’ đồng qui tại điểm M.Gọi S 1 ,S 2 và S 3 lần lượt là diện tích của các tam giác MBC,MCA ,MAB và đặt . Chứng minh rằng: (y+z-1) S 1 +(x+z-1)S 2 +(x+y-1)S 3 =0 Bài 5: (2 điểm). Cho dãy {u n } , n là số nguyên dương , xác đònh như sau : . Tính u n và chứng minh rằng u 1 +u 2 +…+ u n . Bài 6: (2 điểm). Cho đa thức f(x)=x 3 +ax 2 +bx+b có ba nghiệm x 1 ,x 2 ,x 3 và đa thức g(x)=x 3 +bx 2 +bx+a .Tính tổng S=g(x 1 )+g(x 2 )+g(x 3 ) theo a,b. Hết. 1 Đề chính thức 2)12(log13)12(log 22 ≤+−++− xx 2 )1( 0 + ≤≤ nn a .cot) 2 (cot2 cot) 2 (cot2 )cot2(cotcot gB BA g gB BA g gBgAgA − + = + + + z MC MC y MB MB x MA MA === ' , ' , ' > −+ = = + 0 11 1 2 1 1 n n n n u u u u u ]) 2 1 (1[ 4 1 1 − −+≥ n π 2 3 )( 1 )( 1 )( 1 226226226 ≥ + + + + + bacacbcba . SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG THÁP KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH NĂM HỌC 2007-2008. Môn thi : Toán. Ngày thi : 14/10/2007. Thời gian. Ngày thi : 14/10/2007. Thời gian làm bài : 180 phút (không kể phát đề). (Đề thi gồm có 01 trang). Bài 1: (5 điểm). a) Tìm tất cả các số nguyên m sao cho