1. Trang chủ
  2. » Giáo án - Bài giảng

LTDH chuyen de hs Mu_logarit

14 283 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 497,5 KB

Nội dung

Chuyên đề 5: PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG CÓ CHỨA MŨ VÀ LOGARÍT TÓM TẮT GIÁO KHOA I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ MŨ 1. Các đònh nghóa: • n n thua so a a.a .a= 123 (n Z ,n 1,a R) + ∈ ≥ ∈ • 1 a a= a∀ • 0 a 1= a 0∀ ≠ • n n 1 a a − = { } (n Z ,n 1,a R/ 0 ) + ∈ ≥ ∈ • m n m n a a= ( a 0;m,n N> ∈ ) • m n m n m n 1 1 a a a − = = 2. Các tính chất : • m n m n a .a a + = • m m n n a a a − = • m n n m m.n (a ) (a ) a= = • n n n (a.b) a .b= • n n n a a ( ) b b = 20 3. Hàm số mũ: Dạng : x y a= ( a > 0 , a ≠ 1 ) • Tập xác đònh : D R= • Tập giá trò : T R + = ( x a 0 x R> ∀ ∈ ) • Tính đơn điệu: * a > 1 : x y a= đồng biến trên R * 0 < a < 1 : x y a= nghòch biến trên R • Đồ thò hàm số mũ : Minh họa: 21 a>1 y=a x y x 1 0<a<1 y=a x y x 1 f(x)=2^x -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y f(x)=(1/2)^x -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y y=2 x y= 1 x y y x 1 O O II. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ LÔGARÍT 1. Đònh nghóa: Với a > 0 , a ≠ 1 và N > 0 dn M a log N M a N= ⇔ = Điều kiện có nghóa : N a log có nghóa khi      > ≠ > 0 1 0 N a a 2. Các tính chất : • a log 1 0= • a log a 1= • M a log a M= • log N a a N= • a 1 2 a 1 a 2 log (N .N ) log N log N= + • 1 a a 1 a 2 2 N log ( ) log N log N N = − • a a log N .log N α = α Đặc biệt : 2 a a log N 2.log N= 3. Công thức đổi cơ số : • a a b log N log b.log N= • a b a log N log N log b = * Hệ quả: • a b 1 log b log a = và k a a 1 log N log N k = 22 4. Hàm số logarít: Dạng a y log x= ( a > 0 , a ≠ 1 ) • Tập xác đònh : + =D R • Tập giá trò =T R • Tính đơn điệu: * a > 1 : a y log x= đồng biến trên + R * 0 < a < 1 : a y log x= nghòch biến trên + R • Đồ thò của hàm số lôgarít: Minh họa: 23 0<a<1 y=log a x 1 x y O f(x) =ln(x) /ln(1 /2) -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y y=log 2 x x y x y f(x)=ln(x)/ln(2) -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 x y xy 2 1 log= 1 O 1 O a>1 y=log a x 1 y x O 5. CÁC ĐỊNH LÝ CƠ BẢN: 1. Đònh lý 1: Với 0 < a ≠ 1 thì : a M = a N ⇔ M = N 2. Đònh lý 2: Với 0 < a <1 thì : a M < a N ⇔ M > N (nghòch biến) 3. Đònh lý 3: Với a > 1 thì : a M < a N ⇔ M < N (đồng biến ) 4. Đònh lý 4: Với 0 < a ≠ 1 và M > 0;N > 0 thì : log a M = log a N ⇔ M = N 5. Đònh lý 5: Với 0 < a <1 thì : log a M < log a N ⇔ M >N (nghòch biến) 6. Đònh lý 6: Với a > 1 thì : log a M < log a N ⇔ M < N (đồng biến) III. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M = a N (đồng cơ số) Ví dụ : Giải các phương trình sau : x 10 x 5 x 10 x 15 16 0,125.8 + + − − = Bài tập rèn luyện: 3 17 7 5 128.25,032 − + − + = x x x x (x=10) 24 2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số Ví dụ : Giải các phương trình sau : 1) 2x 8 x 5 3 4.3 27 0 + + − + = 2) x x x 6.9 13.6 6.4 0− + = 3) x x ( 2 3) ( 2 3 ) 4− + + = 4) 322 2 2 2 =− −+− xxxx 5) 027.21812.48.3 =−−+ xxxx 6) 07.714.92.2 22 =+− xxx Bài tập rèn luyện: 1) 4)32()32( =−++ xx ( 1 ± x ) 2) xxx 27.2188 =+ (x=0) 3) 13 250125 + =+ xxx (x=0) 4) 12 21025 + =+ xxx (x=0) 5) x x ( 3 8 ) ( 3 8 ) 6+ + − = ( )2 ±= x 6) xxx 8.21227 =+ (x=0) 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 . Ví dụ : Giải phương trình sau : 1) 8.3 x + 3.2 x = 24 + 6 x 2) 0422.42 2 22 =+−− −+ xxxxx Bài tập rèn luyệnï: 20515.33.12 1 =−+ + xxx ( 3 5 log 3 = x ) 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh 25 nghiệm duy nhất (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau: • Tính chất 1 : Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 1) 3 x + 4 x = 5 x 2) 2 x = 1+ x 2 3 3) x 1 ( ) 2x 1 3 = + Bài tập rèn luyện: 1) 163.32.2 −=+ xxx (x=2) 2) x x −= 32 (x=1) IV. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N= (đồng cơ số Ví dụ : Giải các phương trình sau : 1) + = x log (x 6) 3 2) x x 1 2 1 2 log (4 4) x log (2 3) + + = − − 3) )3(log)4(log)1(log 2 1 2 2 1 2 2 xxx −=++− ( 141;11 +−=−= xx ) 2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số. Ví dụ : Giải các phương trình sau : 26 1) 3 3 2 2 4 log x log x 3 + = 2) 051loglog 2 3 2 3 =−++ xx 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 . Ví dụ : Giải phương trình sau : 2 7 2 7 log x 2.log x 2 log x.log x+ = + Bài tập rèn luyệnï: )112(log.loglog.2 33 2 9 −+= xxx (x=1;x=4) 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất. (thường là sử dụng công cụ đạo hàm) 27 * Ta thường sử dụng các tính chất sau: • Tính chất 1 : Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : 2 2 2 log (x x 6) x log (x 2) 4− − + = + + V. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M < a N ( , ,≤ > ≥ ) Ví dụ : Giải các bất phương trình sau : 1) 2 x x 1 x 2x 1 3 ( ) 3 − − − ≥ 2) 2 x 1 x 2x 1 2 2 − − ≥ Bài tập rèn luyện: 11 3322 −+ +≤+ xxxx ( 2 ≥ x ) 2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 28 1) 2x x 2 2 3.(2 ) 32 0 + − + < 2) x 3 x 2 2 9 − + ≤ 3) 2 1 1 x x 1 1 ( ) 3.( ) 12 3 3 + + > 4) 52428 11 >+−+ ++ xxx ( )20 ≤< x 5) 11 21212.15 ++ +−≥+ xxx ( 2 ≤ x ) Bài tập rèn luyệnï: 0449.314.2 ≥−+ xxx ( 3log 7 2 ≥ x ) VI. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N< ( , ,≤ > ≥ ) Ví dụ : Giải các bất phương trình sau : 1) 2 x log (5x 8x 3) 2− + > 2) − < 2 3 3 log log x 3 1 3) 2 3x x log (3 x) 1 − − > 4) x x 9 log (log (3 9)) 1− ≤ 5) )12(log12log4)1444(log 2 555 ++<−+ − xx 2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 29 . 163.32.2 −=+ xxx (x=2) 2) x x −= 32 (x=1) IV. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản. 0449.314.2 ≥−+ xxx ( 3log 7 2 ≥ x ) VI. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản

Ngày đăng: 02/09/2013, 23:10

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w