Tìm hiểu bài toán - Làm rõ phần đã cho và phần cần tìm - Nếu trong các phần đó có cái khó hiểu thì có thể làm rỗ chúng nhờ diễn đạt lại bằng cách khác.. Lập kế hoạch giải toán Đi tìm hơ
Trang 1quy trình giải một bài toán
Đờng lối chung để giải một bài toán trải qua 4 bớc:
1 Tìm hiểu bài toán
- Làm rõ phần đã cho và phần cần tìm
- Nếu trong các phần đó có cái khó hiểu thì có thể làm rỗ chúng nhờ diễn đạt lại bằng cách khác
- Để làm rõ phần đã cho và phần cần tìmta thờng tóm tắt: có thể ghi ngắn gọn, lập bảng, sơ đồ,
Ví dụ : Một chiếc cầu dài 400 m có biển cấm 10 km/ h Ngời đi ô tô đi hết 4 phút Hỏi ngời đó có tôn trọng luật giao thông không? ( TL: có)
2 Lập kế hoạch giải toán
Đi tìm hơng giải cho bài toán, ở Tiểu học con đờng đi tìm hớng thờng
nh sau:
- Đầu tiên xét xem bài toán cần giải có thuộc loại điển hình hay không?
- Nếu không xét xem bài toán cần giải có tơng tự với bài toán đã biết cách giải hay không?
- Nếu khong thì tìm cách phân tích bài toán cần giải thành các bài toán thành phần đã biết cách giải Sự phân tích có thể tiến hành theo nhiều cấp: phân tích bài toán ban đầu thành 1 số bài toán đơn giản hơn Sau đó lại phân tích bài toán này thành các bài toán đơn giản hơn nữa Để giải mỗi bài toán thành phần chúng ta áp dụng PP giải toán Các bài toán thành phần khác nhau có thể giải bằng nhiều PP khác nhau
Nh vậy để giải một bài toán chúng ta phối hợp nhiều PP giải toán Điều đó có nghĩa là năng lực lập kế hoạch giải các bài toán cũng chính là năng lực phối hợp các
PP giải toán
Ví dụ: Bể 1 có 4 con cá, bể 2 có nhiều hơn bể 1 là 3 con cá Hỏi cả 2 bể có bao nhiêu con cá?
Bài toán này dựa vào 2 bài toán:
- Bài toán 1: Bể 1 có 4 con cá, bể 2 có nhiều hơn bể 1 là 3 con Hỏi bể 2 có bao nhiêu con? ( lớp 1)
- Bài toán 2: Bể 1 có 4 con cá, bể 2 có 7 con cá Hỏi cả 2 bể có bao nhiêu con cá? (btoán gộp - lớp 1)
3 Thực hiện kế hoạch giải toán
Thực chất đây là bớc trình bày bài giải
4 Nhìn lại bài toán
Bớc này không bắt buộc nhng khi dạy GV nên HDHS theo các bớc:
- Kiểm tra rà soát lại công việc giải toán
- Tìm cách giải khác và so sánh các cách giải
- Suy nghĩ khai thác thêm đề bài ( có thể sáng tác bài toán khác)