1. Trang chủ
  2. » Giáo án - Bài giảng

DE-DAP AN TOAN CHUYEN LUONG VAN TUY(Vong 1)

4 722 8
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 160 KB

Nội dung

UBND TỈNH NINH BÌNH SỞ GIÁO DỤC & ĐÀO TẠO ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10- THPT Chuyên Lương Văn Tụy Năm học 2009- 2010 (Khóa ngày 30/9/2009) Môn thi: TOÁN- VÒNG I Đề thi gồm 05 câu trong 01 trang Câu 1: (2 điểm) Tính giá trị biểu thức: ( ) x 5 2 2 5 5 250= + − 3 3 y 3 1 3 1 = − − + ( ) x x y y A x y x xy y + = − − + Câu 2: (2,5 điểm) Cho phương trình (m + 1)x 2 – 2(m – 1) + m – 2 = 0 (ẩn x, tham số m). a) Giải phương trình khi m = 2. b) Tìm m để phương trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn: 1 2 1 1 7 x x 4 + = Câu 3: (1,0 điểm) Khoảng cách giữa hai bến sông A và B là 60 km. Một ca nô chạy xuôi dòng từ bến A tới bến B, nghỉ 1 giờ 20 phút ở bến sông B và ngược dòng trở về A. Thời gian kể từ lúc khởi hành đến khi về bến A tất cả 12 giờ. Tính vận tốc riêng của ca nô và vận tốc dòng nước biết vận tốc riêng của ca nô gấp 4 lần vận tốc dòng nước. Câu 4: (3,5 điểm) Cho đường tròn (O; R) và đường thẳng (d) không đi qua tâm O cắt đường tròn (O; R) tại hai điểm phân biệt A, B. Điểm M chuyển động trên (d) và nằm ngoài đường tròn (O; R), qua M kẻ hai tiếp tuyến MN và MP tới đường tròn (O; R) (N, P là hai tiếp điểm). a) Chứng minh rằng tứ giác MNOP nội tiếp được trong một đường tròn, xác định tâm đường tròn đó. b) Chứng minh MA.MB = MN 2 . c) Xác định vị trí điểm M sao cho tam giác MNP đều. d) Xác định quỹ tích tâm đường tròn ngoại tiếp tam giác MNP. Câu 5: (1 điểm) Cho hai số thực dương x, y thỏa mãn: 4 5 23 x y + ≥ Tìm giá trị nhỏ nhất của biểu thức: 6 7 B 8x 18y x y = + + + ----------------------------------------------Hết---------------------------------------------- Cán bộ coi thi không giải thích gì thêm! ĐÁP ÁN Câu 1: (2 điểm) Tính giá trị biểu thức: ( ) ( ) ( ) x 5 2 2 5 5 250 5 2 2 5 5 5 5. 2 5 2 5 2 2 5 5 2 10 = + − = + − = + − = ( ) ( ) ( ) 3 3 y 3 1 3 1 3 3 1 3 3 1 3 1 3 1 3 3 1 3 2 = − − + + − = − − − − = = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 3 x x y y A x y x xy y x y x y x xy y x y x y x xy y x xy y x y x y x y 10 3 7 + = − − + + + − + = − = − − + − + = + − = − = − = Câu 2: (2,5 điểm) a) Xét phương trình (m + 1)x 2 – 2(m – 1)x + m – 2 = 0 Khi m=2 phương trình trở thành: 2 3x – 2x = 0 ( ) 0 3 2 2 3 x x x x =   ⇔ − ⇔  =  b) Để phương trình là phương trình bậc 2 thì trước tiên m ≠ -1 ( ) ( ) ( ) 2 ' 1 1 2 3m m m m∆ = − − + − = − Để phương trình có 2 nghiệm phân biệt thì ' 0∆ > hay m<3 (1) Áp dụng định lý Viet cho phương trình ta có 1 2 1 2 2( 1) 1 2 . 1 m S x x m m P x x m −  = + =   +  −  = =  +  (2) Xét biểu thức 1 2 1 2 1 2 1 1 7 x x 7 x x 4 x .x 4 + + = ⇔ = (3) Thế (2) vào (3) 2( 1) 2 7 : 1 1 4 2( 1) 7 8 8 7 14 2 4 m m m m m m m m − − ⇒ = + + − ⇔ = ⇔ − = − − 6m ⇔ = − Kết hợp với điều kiện (1) kết luận m=-6 Câu 3: (1,0 điểm) Gọi vận tốc của dòng nước là: x (km/giờ) (ĐK: x>0) Vận tốc thực của ca nô là: 4x (km/ giờ) Khi ca nô xuôi dòng từ A đến B vận tốc của ca nô so với đường là: 4x+x (km/giờ) Thời gian ca nô xuôi dòng từ A đến B là: 60 12 4x x x = + (giờ). Khi ca nô ngược dòng từ B về A vận tốc của ca nô so với đường là: 4x-x (km/giờ) Thời gian ca ngược dòng từ B về A là: 60 20 4x x x = − (giờ). Thời gian ca nô nghỉ ở B là 1 giờ 20 phút hay 4 3 giờ. Vì tổng thời gian hết 12 giờ nên ta co phương trình 12 20 4 12 3 8 1 20 3 3 x x x x + + = ⇔ + = ⇔ = Kết luận: Vận tốc dòng nước là 3 km/giờ. Vận tốc thực của ca nô là 3 x 4=12 km/giờ. Câu 4: (3,5 điểm) a) CM tứ giác MNOP nội tiếp: Xét tứ giác MNOP có MN ON ⊥ (Tính chất tiếp tuyến ⊥ dây cung) · 0 ONM 90⇒ = MP OP ⊥ (Tính chất tiếp tuyến ⊥ dây cung) · 0 OPM 90⇒ = ⇒ · · 0 ONM+OPM 180= Vậy tứ giác MNOP nội tiếp trong đường Tròn đường kính OM, tâm là trung điểm OM (Tứ giác có tổng hai góc đối bằng 180 0 ). b) CM: MA.MB = MN 2 : Xét 2 tam giác ∆ AMN và ∆ NMB có Góc · AMN chung. · ANM = · ABN (Góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cung chắn cung » AN của đường tròn tâm O). ⇒ ∆ AMN đồng dạng với ∆ NMB 2 MA MN = MA.MB = MN MN MB ⇒ ⇔ (Điều phải chứng minh). c) Xác định vị trí điểm M sao cho tam giác MNP đều. * Xét ∆ MNP có MN=MO (Tính chất 2 tiếp tuyến cắt nhau). Nên ∆ MNP cân tại M. * Giả sử ∆ MNP đều thì góc · 0 NMP 60= Theo tính chất 2 tiếp tuyến cắt nhau ta có OM là phân giác của góc · NMP nên ⇒ · 0 ONM 30= * Lại có tam giác ∆ OMN vuông tại N và · 0 ONM 30= nên ⇒ · 0 NOM 60= Gọi I là trung điểm OM thì IN=IM=IO (NI là trung tuyến ứng cạnh huyền của tam giác vuông OMN) ⇒ Tam giác ∆ ONI đều Vậy IN=IM=IO=R hay OM =2R * Kết luận: Vậy để tam giác MNP đều thì OM=2R. d. Quỹ tích tâm đường tròn ngoại tiếp tam giác MNP là đường thằng d’ song song với đường thẳng d (trừ các điểm ở bên trong đường tròn). Bài 5: 6 7 2 2 4 5 B 8x 18y 8x 18y x y x y x y       = + + + = + + + + +  ÷  ÷  ÷       Áp dụng BĐT Côsi và BĐT của đầu bài đã cho ta có B 8 12 23 43≥ + + = Dấu bằng xảy ra khi ( ) 1 1 x;y ; 2 3   =  ÷   . Vậy giá trị nhỏ nhất của B là 43 khi ( ) 1 1 x;y ; 2 3   =  ÷   . Thế (2) vào (3) 2( 1) 2 7 : 1 1 4 2( 1) 7 8 8 7 14 2 4 m m m m m m m m − − ⇒ = + + − ⇔ = ⇔ − = − − 6m ⇔ = − Kết hợp với điều kiện (1) kết luận m=-6 Câu. − − + − + = + − = − = − = Câu 2: (2,5 điểm) a) Xét phương trình (m + 1)x 2 – 2(m – 1)x + m – 2 = 0 Khi m=2 phương trình trở thành: 2 3x – 2x = 0 ( ) 0 3

Ngày đăng: 31/08/2013, 03:10

TỪ KHÓA LIÊN QUAN

w