1. Trang chủ
  2. » Luận Văn - Báo Cáo

Các hệ cơ sở tri thức Tuần 6: Thuật giải Di Truyền: Kỹ thuật và ứng dụng

49 109 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 611,68 KB

Nội dung

Các hệ sở tri thức Tuần 6: Thuật giải Di Truyền: Kỹ thuật ứng dụng Lê Hoàng Thái Tổng Quan Nghiên Cứu Về thuật giải di Truyền  Thuật giải di truyền  Các thao tác  Biểu diễn di truyền lời giải tiềm tàng toán  Hàm đánh giá  chế chọn lọc, lai ghép đột biến  Phạm vi ứng dụng Thuật giải di truyền  Đặt vấn đề: Từ trước đến nghiên cứu ứng dụng tin học xuất nhiều tốn lý thú chưa tìm phương pháp giải nhanh hợp lý Phần lớn toán tối ưu nảy sinh ứng dụng Để giải loại tốn này, người ta thường phải tìm đến thuật giải hiệu mà kết thu xấp xỉ tối ưu thuật giải di truyền (GA) cơng cụ Thuật giải di truyền  Nội dung GA: Thuật giải di truyền (GA) thuật giải áp dụng q trình tiến hố tự nhiên để giải toán tối ưu thực tế (từ tập lời giải ban đầu, thơng qua nhiều bước tiến hố, hình thành tập hợp với lời giải tốt hơn, cuối tìm lời giải gần tối ưu nhất) Thuật giải di truyền  Cấu trúc thuật giải di truyền thể qua đồ sau: Procedure Tgditruyền; Begin t = 0; Khởi tạo lớp P(t); Đánh giá lớp P(t); While not Đk kết thúc Begin t=t+1; Chọn lọc P(t) từ P(t-1); Kết hợp cá thể P(t); Đánh giá lớp P(t); End End Thuật giải di truyền  đồ: Thuật giải di truyền  Kết luận: Tóm lại, nhận thấy GA thuật giải lặp nhằm giải đáp tốn tìm kiếm Nó khác với thủ tục tối ưu thơng thường điểm sau:  Thứ nhất, thuật giải di truyền làm việc với xâu, tìm kiếm nhiều đỉnh (điểm tối ưu) lúc Nhờ áp dụng tốn tử di truyền, trao đổi thông tin đỉnh, giúp giảm bớt khả kết thúc cực tiểu cục mà khơng tìm thấy cực tiểu tồn cục  Thứ hai, làm việc với mã biến, với thân biến  Thứ ba, thuật giải cần đánh giá hàm mục tiêu để phục vụ q trình tìm kiếm, khơng đòi hỏi thơng tin bổ trợ khác  Cuối cùng, thao tác thuật giải di truyền dựa khả tích hợp tính ngẫu nhiên trình xử lý Các thao tác  Thuật giải di truyền cho toán cụ thể bao gồm năm vấn đề:  Biểu diễn di truyền với lời giải toán;  Tạo tập hợp ban đầu lời giải P(t)={x1t,x2t, ,xnt};  Hàm đánh giá: đánh giá mức độ phù hợp lời giải;  Các toán tử di truyền sử dụng để sản sinh cháu (Lai ghép đột biến)  Giá trị tham số mà GA sử dụng (Kích cỡ tập hợp pop_size, xác suất áp dụng toán tử di truyền,vv ) Các thao tác  Minh hoạ vấn đề hai toán  Bài toán 1: Bài toán tối ưu hoá hàm nhiều biến liên tục bất kỳ: ứng dụng tốn hóa học  Bài tốn 2: Bài tốn tối ưu hóa hàm nhiều biến rời rạc: ứng dụng toán người du lịch (Travelling Saleman Problem) Biểu diễn di truyền lời giải tiềm tàng toán  Biểu diễn nhị phân  Mỗi lời giải hiểu véc tơ nhiễm sắc thể, phần tử (mỗi biến) vector nhiễm sắc thể mã hoá nhờ số lượng bit (0,1)  Độ xác phương pháp tùy thuộc vào số lượng bit thực dùng (UB-LB)/(2n-1), UB, LB cận cận miền giá trị n số lượng bit phần tử nhiễm sắc thể Lai(tt) Các kết thu sau “lai” là: Phép tốn đảm bảo khơng làm ảnh hưởng đến cấu trúc ngữ cảnh cây, cho phép trao đổi Av A’v nA(v)=nA’(v’) (v)=’(v’) Thuật giải tiến hóa tạo lập miền cá thể tối ưu Switch : Ứng dụng nhị phân tương tự phép toán “đột biến” ứng dụng chuỗi, cho phép biến đổi bit từ từ Phép toán switch ứng dụng phụ thuộc vào đỉnh v nhận dạng độ rộng n: Cho :  A=(V,E,ε,σ) với độ rộng n  Phép switch không hoạt động nếu: v є T(tập nút lá)  Trong trường hợp khác,phép “switch” cho phép tạo độ rộng n: Avs=(V,E, εvs ,σ) Trong εvs :(V\T)x{+,-} →E trùng khớp vớingoại trừ đỉnh v Tại đỉnh v, εvs (v,+)= ε(v, - ) thay εvs (v, -)= ε (v,+) Switch(tt) Ví dụ: Tốn tử switch ứng dụng nút p2 nhận dạng : Switch(tt) Kết thu nhận dạng mới: Thuật giải tiến hóa tạo lập miền cá thể tối ưu  Translocation(chuyển dịch)  Cho nhận dạng độ rộng n: A=(V,E,ε,σ)  Chọn vài đỉnh v єV vài nút t є T, phép “chuyển dịch” cho phép thay A nhận dạng Av,t=(Vv,t=V,Ev,t , εv,t ,σv,t= σ)  Tập nhánh Ev,t chứa nhánh ev,t ,mỗi nhánh e: v1 v2 E,được định nghĩa sau: (1)Nếu v2 ≠ v,t,v2 ≠ v,t,thì ev,t=e (2)Nếu v2=v,thì xây dựng nhánh ev,t: v1 t (3)Nếu v2=t,thì xây dựng nhánh ev,t: v1→ w,với w = t(đỉnh A) w=v,phụ thuộc vào t є Av hay không Ánh xạ εv,t (w,+)=(w,-)= ε(w,-)v,t với w thuộc V\T Translocation(chuyển dịch) (tt) Ví dụ: Nếu ứng dụng phép “chuyển dịch” nút định nhận dạng đây: Translocation(chuyển dịch)(tt) Thì sau thu câynhận dạng mới: Translocation(chuyển dịch)(tt) Trong trường hợp khác, nút chọn lọc: Translocation(chuyển dịch)(tt) Chúng ta thu nhận dạng sau (với nút đỉnh khác): Thuật giải tiến hóa tạo lập miền cá thể tối ưu  Nhóm phép di truyền vi mô tác động lên thành phần sở cây:  Vi lai:Phụ thuộc vào ánh xạ  : P  P  J  P  P J =[0,1] Trong phần lớn ứng dụng, P trở thành tập: 0, , c, L 0, , c,,rs với j  J, ánh xạ trở thành phép “lai” nhóm vị trí xác định j Vi lai(tt) Xuất phát từ cặp nhận dạng độ rộng n: A'  V ' , E ' ,  ' ,  ' .và A  V , E,  ,  chọn đỉnh nút v  V v’ V’ Nếu biến ngẫu nhiên rand  J, “Vi- lai” thay (v) ’(v’) q q’, xác định q, q '     v ,  ' v ' , rand  Trong phiên thô, v v’ chọn ngẫu nhiên.Trong phiên tinh chỉnh, toán tử xem xét P phù hợp với (kiểu, giá trị) không, cho phép “vi-lai” cặp với thành phần kiểu Thuật giải tiến hóa tạo lập miền cá thể tối ưu  Vi-đột biến: Được xác định ánh xạ:  : P  J  J Với j cho trước Nếu P  0, , c, ,L xem  thay đổi phần tử vị trí xác định j, thơng qua ánh xạ P->P Trong trường hợp tổng quát, thay cho v V \ T, với giá trị (v)  v, rand    v (trong rand J giá trị ngẫu nhiên)  Với phép di truyền định nghĩa trên, ta ứng dụng thuật giải tiến hóa EA chương để xác định nhận dạng tối ưu Thuật giải tiến hố tổng qt tìm nhận dạng – n tối ưu (1)t:=0; (2)Khởi tạo A(t )  A1, A2 , , AM ; (3)Trong (Điều kiện kết thúc lặp  (3.1)Lượng giá A(t )  f ( A1), f ( A2 ), , f ( AM ); A(t)  True ) (3.2)t:=t+1; '  A(t  1); (3.3)Chọn: A'(t )  A1' , A2' , , AM (3.4)Lai: R(t )  R( A' (t )); với xác suất lai pc (3.5)Đột biến: M (t )  M ( R( A'(t ))); với xác suất đột biến pm (3.6)Chuyển dịch(Translocation): T (t )  T (M (t )); với xác suất chuyển dịch pt (3.7)Vi lai:  c (t )   c (T (t )); với xác suất vi lai p  c (3.8)Vi đột biến:  m (t )   m ( c (t )); với xác suất đột biến p  Chọn để hình thành: A(t )  A( A(t  1)  R(t )  M (t ) T (t )  c (t )   m (t ) ); m Hết lặp Thuật giải tiến hoá tổng quát tìm nhận dạng – n tối ưu  Sau kết thúc vòng lặp, thu quần thể cá thể tối ưu Lúc này, việc chọn cá thể lượng giá tốt quần thể làm nghiệm tối ưu cho toán  Tuy nhiên, Thuật giải thuật giải tìm kiếm nhận dạng – n trường hợp tổng quát Vào ứng dụng cụ thể, định áp dụng tốn tử di truyền áp dụng nào? Để minh hoạ khả Thuật giải, áp dụng Thuật giải để giải toán chứng thực vector ... Về thuật giải di Truyền  Thuật giải di truyền  Các thao tác  Biểu di n di truyền lời giải tiềm tàng toán  Hàm đánh giá  Cơ chế chọn lọc, lai ghép đột biến  Phạm vi ứng dụng Thuật giải di. .. tối ưu thuật giải di truyền (GA) cơng cụ 1 Thuật giải di truyền  Nội dung GA: Thuật giải di truyền (GA) thuật giải áp dụng trình tiến hố tự nhiên để giải tốn tối ưu thực tế (từ tập lời giải ban... End Thuật giải di truyền  Sơ đồ: Thuật giải di truyền  Kết luận: Tóm lại, nhận thấy GA thuật giải lặp nhằm giải đáp tốn tìm kiếm Nó khác với thủ tục tối ưu thông thường điểm sau:  Thứ nhất, thuật

Ngày đăng: 24/04/2019, 13:34

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w