1. Trang chủ
  2. » Luận Văn - Báo Cáo

ĐỒ án (SEMINAR) môn học các hệ cơ sở TRI THỨC đề tài hand geometry recognition

21 381 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 612,16 KB

Nội dung

I HC QUC GIA TP. H  I HC KHOA HC T    NGUY  1011073 NGUY  1011075   1012064 O - 1011087  C   TRI THC  Hand Geometry Recognition TP.HCM  10/2010 i MC LC 1. Gii thiu 1 2. ng tip cn 3 2.1. Tng quan chung 3 2.1.1. Thu mu 3 2.1.2. X  4 2.1.3. So khp 5 u chnh 6 2.1.5. Hiu qu ca h thng 6 2.1.6. S chu 6  7  s  7 ng vi 8 ng tip cn c 8 2.3.1. Thu thp nh 9 2.3.2. Tin x  9  10 2.3.3.1.  10 2.3.3.2.  11 2.3.4. So kh 13 3. ng dng 14 4. n 15 ii  2-c x  sinh trc hc s d 3 2- v p t  u r  5 2- s  7 2-4. Vi 8 2-ng tip cn c 9 2-6.  10 2-m nh 11 2-8.  11 2-9. nh b ri c 12 2-10. nh chi 13 iii NG 1-m sinh trc hc[1] 2 1 NI DUNG 1. Gii thiu i bng cm quan cn di th cc nhn dng da    m v           c hc (biometric).Thut ng   c h n gc t  Hy Lc sng [1] mong murc h thc hin vic nhn dm thay th nh danh dt kh nhu bt tiy. m vi c s dng tc hn din b d  c c[2]t m sinh trc h 1-1.m   c s d   h nhn dng (identification       chng th   m ca k thu    gin, d s dt trong nhng k thut chng thc da c hng d gii. K thut nhn dim ni bt sau [3]: - D li n - ng bu t ngoi cnh - D s dn vi  - X  2 - D  thn ti - T l tht bi thng thc ng dng k thuu t  nh n hiu qu  - c hun luyn tt - V  p - c tip ho -  - n dng c m 1-1m sinh trc hc[1] 3 2. ng tip cn 2.1. Tng quan chung K thut nhn din b  thut sinh trc hc n sau [3]: - Capture: thu thp mu - Process: x  c cn nhn din - Compare: so khp vi d li d li   - u chnh d liu  u qu h thp nht mt s i vi gian) 2.1.1. Thu mẫu Vic thu mng s dng mt hoc nhiu camera quang hc ho t phng (flat-t b  Mu sinh trc hc Thu mu X  So khp u chnh Ra quyt nh CSDL 2-1c x  sinh trc hc s d 4 ra k thu loi b  b mt ct, vt bng  s dng. Nhiu h thc tip t ng hoc trc tip t  thu gng vic thu thnh 3D ca  pi c thi s dn nay ng thu so v 2.1.2. Xử lý Mt s h thng nh t s th  ng v  V thc tin x  loi b ng c. Vic x   a thut s u cho rng h thn ng s t s   phng b s du qu.   thu h thng hc thut x nh nh  i   mm m l gi  u c   5 2-2 v p t  u r  Ngun: http://www.cse.msu.edu/biometrics/hand_proto.html 2.1.3. So khớp  p (classification) nhnh   gia hai m qua 1 s c bic x  c so khp v li  d lip cn ph bin nht s  tip c dc bi         n (principal component  6 2.1.4. Điều chỉnh m u qu ca h th t s i ci gian. C th nh i tr, tay b u hip. Nhng ng xy ra t t trong mt th u chnh vi nht thi gian ngc mt n. 2.1.5. Hiệu quả của hệ thống Viu qu c thng s dvic s dp d liu t ng t l sai ca thuc hip d liu c th bao gm - Thit b thu nhn mu - c tp d liu - S ng cn trong d liu - Chnh thp -  dng - ng kim tra - t tay -  2.1.6. Sự chuẩn hóa c ng dng nhii n chung ca quc t git b c chn xu c v m bo khi d lic nhn d  kt hp vn [...]... phát tri n của công nghệ vật liệu, các máy móc hiện đại và các hướng nghiên cứu mới, hiện nay kỹ thuật nhận diện dựa trên h nh dáng bàn tay đang tập trung vào các nghiên cứu sau: - Trong thương mại: các công ty vẫn phát tri n và tiếp tục cải tiến các thiết bị nhận diện dựa trên h nh dáng bàn tay Nhằm giảm tỉ lệ so khớp thất bại, các công ty đã tăng số byte của mẫu nhận dạng.Đồng thời họ cũng sử dụng các. .. thanh toán trong phạm vi nhỏ (như trong trường học hoặc khách sạn hoặc trong các dịch vụ tài chính của ngân hàng) - Hệ thống Immigration and Naturalization Service Passenger Accelerated Service System (INSPASS) cũng sử dụng đặc điểm sinh trắc học này để cho phép các thương nhân thường xuyên nhập cảnh vào Hoa Kỳ không phải tốn thời gian làm các thủ tục nhập cảnh từ năm 1994 14 4 Hƣớn phát tri n Các nghiên... quang học có độ phân giải cao hơn trong các mẫu máy mới - Trong nghiên cứu: các nghiên cứu gần đây chỉ ra hiệu quả của kỹ thuật này không chỉ phụ thuộc vào các đặc điểm sinh trắc của bàn tay mà còn phụ thuộc rất nhiều vào thuật toán rút trích các đặc điểm đó Các nhà nghiên cứu đang cố gắng áp dụng các thuật toán nhận diện cho phép đặt tay bất k hoặc chỉ cần vẫy tay trước camera Để tăng hiệu quả học cũng... hiệu quả học cũng t m cách kết hợp 2 hướng thuật toán dựa trên vòng bao ngoài và các đặc điểm h nh học - Ngoài ra một hướng nghiên cứu mới gần đây được quan tâm là kết hợp với các phương pháp nhận diện sinh trắc (trong đó có cả nhận diện bằng h nh dáng bàn tay) nhằm tăng hiệu quả của hệ thống nhận diện 15 TÀI LIỆU THAM KHẢO [1] Kresimir Delac and Mislav Grgic, "A survey of biometric recognition methods,"... of biometric recognition systems and their applications," Journal of Theoretical and Applied Information Technology, vol 11, pp 45-51 [3] Patrick Flynn, Arun A Ross Anil K Jain, Ed., Handbook of biometrics.: Springer, 2008 [4] Fayyaz A Afsar Qaisar N Ashraf, "Person Identification based on Palm and Hand Geometry, " [5] Asker M Bazen, Wim Booij, Anne Hendrikse Raymond N J Veldhuis, "Handgeometry Recognition. .. trên đường viền này bao gồm các đầu mút ngón tay, các kẽ tay,…Giữa các điểm đánh dấu quan trọng này, ta chọn thêm n điểm phụ khác Tất cả các điểm đánh dấu này đều được chuyển thành vector đặc trưng cho h nh bàn tay hiện tại H nh 2-4 Viền bàn tay với các điểm đặc trƣn [5] 2.3 Hƣớng tiếp cận của nhóm Hướng tiếp cận của nhóm dựa trên phương pháp không sử dụng pin và rút trích các đặc trưng ở mức cao bao... điểm p1, p2 cách đều p về index trên contour và tạo thành một góc α Nếu α bé hơn một ngưỡng ε cho trước th p được xem là một điểm mút Ngưỡng ε được chọn tùy thuộc vào độ phân giải của bức ảnh, độ mở rộng của các ngón tay và mục đích t m vùng khả mút trên bàn tay 10 H nh 2-7 Xác định óc của điểm nh H nh 2-8 Ảnh xác định các điểm mút 2.3.3.2 Rút trích các đặc trưng Dựa vào các điểm mút, các thông số... trưng về số đo các thành phần trên bàn tay H nh ảnh bàn tay sẽ được nhị phân hóa, sau đó hệ thống sẽ tiến hành rút trích những đặc trưng về số đo của bàn tay bao gồm: kích thước của các ngón tay, độ dài và độ rộng của bàn tay, bề dày bàn tay, … H nh 2-3 Các đặc trƣn về số đo bàn tay[4] 7 2.2.2 Rút trích các điểm đặc trưng trên đường viền bàn tay Từ đường viền bàn tay, ta chọn ra các điểm đánh dấu quan... cơ sở dữ liệu Độ tương đồng giữa hai vector được tính bằng cosin góc xen giữa dựa trên công thức được xem là tương đồng khi và chỉ khi | || | Hai vector lớn hơn một ngưỡng cho trước Với thiết bị có sẵn của nhóm, sau khi làm thực nghiệm, ngưỡng được chọn là 0.999 13 3 Ứng dụng - Với các đặc điểm như dễ sử dụng, thân thiện người dùng nên kỹ thuật này được sử dụng nhiều trong các hệ thống cửa ra vào Đây... rộng trên các ngón út, ngón áp út, ngón giữa, ngón trỏ và ngón cái  w6, w7, w8, w9: bề rộng dưới các ngón út, ngón áp út, ngón giữa và ngón trỏ  h1, h2, h3, h4: độ dài các ngón út, ngón áp út, ngón giữa và ngón trỏ H nh 2-9 Ảnh xác định bề rộn dƣới của n ón tay 12 H nh 2-10 Ảnh xác định chiều dài n ón tay 2.3.4 So khớp vector đặc trưng Vector sinh trắc được so khớp với các vector trong cơ sở dữ liệu . [3] Patrick Flynn, Arun A. Ross Anil K. Jain, Ed., Handbook of biometrics.: Springer, 2008. [4] Fayyaz A. Afsar Qaisar N. Ashraf, "Person Identification based on Palm and Hand Geometry, " Mislav Grgic, "A survey of biometric recognition methods," 2004. [2] Ravindra Thool, Balwant sonkamble Sulochana Sonkamble, "Survey of biometric recognition systems and their applications,". 1012064 O - 1011087  C   TRI THC   Hand Geometry Recognition TP.HCM  10/2010 i MC LC 1. Gii thiu 1 2. ng

Ngày đăng: 26/01/2015, 10:06

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w