1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tuyển sinh lớp 10 THPT năm học 2010 môn TOÁN – Sở giáo dục đào tạo TỈNH ĐẮK NÔNG

7 722 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 161,4 KB

Nội dung

Đề thi tuyển sinh lớp 10 THPT năm học 2010 môn TOÁN – Sở giáo dục đào tạo TỈNH ĐẮK NÔNG

SỞ GIÁO DỤCĐÀO TẠOTHI TUYỂN SINH LỚP 10 THPT TỈNH ĐĂK NÔNG Khóa ngày 21 tháng 6 năm 2010 MÔN THI: TOÁN Thời gian: 120 phút (Không kể thời gian giao đề) Bài 1: (1,5 điểm) Cho biểu thức với . 1) Rút gọn P. 2) Tính giá trị của P khi . Bài 2: (1,5 điểm) 1) Giải phương trình : . 2) Không dùng máy tính, giải hệ phương trình sau: Bài 3: (1,5 điểm) Cho parabol (P): y = x 2 và đường thẳng (d ): y = 2x + m. 1) Vẽ parabol (P). 2) Tìm m để đường thẳng (d ) cắt parabol (P) tại hai điểm. Bài 4: (1,5 điểm) Cạnh huyền của một tam giác vuông bằng 10cm, hai cạnh góc vuông hơn kém nhau 2cm. Tính các cạnh góc vuông của tam giác vuông đó. Bài 5: (4,0 điểm) Trên đường tròn (O, R) đường kính AB, lấy hai điểm M, E theo thứ tự A, M, E, B. Hai đường thẳng AM và BE cắt nhau tại điểm C, AE và BM cắt nhau tại điểm D. 1) Chứng minh MCED là một tứ giác nội tiếp. 2) Gọi H là giao điểm của CD và AB. Chứng minh BE.BC = BH.BA. 3) Cho , tính thể tích của hình do quay quanh cạnh MB sinh ra. 4) Chứng minh các tiếp tuyến tại M và E của đường tròn (O) cắt nhau tại một điểm nằm trên đường thẳng CD. ----------------- Hết ----------------- (Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh: ; SBD: P 1 2 2 1 1 1 : 1 a a a a a a      ÷  ÷  ÷  ÷     = + + − − − − − 0 1;4a< ≠ 9 a = 2 5 4 0x x− + = 2 1 2 7 x y x y      − = + = · 0 CAB 60= AMB ∆ Giám thị 1: .;Giám thị 2: . 2 SỞ GIÁO DỤCĐÀO TẠOTHI TUYỂN SINH LỚP 10 THPT TỈNH ĐĂK NÔNG Khóa ngày 21 tháng 6 năm 2010 MÔN THI: TOÁN ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MÔN TOÁN Bài Nội dung Điểm 1 (1,5 đ) 1) Điều kiện: = = 0,5 0,25 0,25 2) Với a = 9 thì 0,5 2 (1,5 đ) 1) Giải phương trình : (1) Ta có: a + b + c = 0 0,25 0,25 0,25 2) 0,25 0,25 0,25 3 (1,5 đ) 1) Vẽ đồ thị: Bảng giá trị: 0,25 0 1;4a< ≠ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 1 1 2 1 P : 1 1 a a a a a a a a a a + − + − − − − + = − − ( ) ( ) ( ) 2 1 1 1 1 4 a a a a a a − − − × − − + 2 3 a a − 2 9 2 1 P 9 3 3 9 a a − − = = = 2 5 4 0x x− + = 1 1x⇒ = 2 4 1 4 c a x = = = 2 1 2 1 2 7 4 2 14 x y x y x y x y     ⇔       − = − = + = + = 5 15 2 1 x x y   ⇔    = − = 3 1 x y   ⇔    = = 3 x … - 2 -1 0 1 2 … … 4 1 0 1 4 … 2 y x= Vẽ đúng đồ thị 0,5 2) Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình: (1) Ta có: Để (d) cắt (P) tại hai điểm thì phương trình (1) có 2 nghiệm phân biệt, hay: 0,25 0,25 0,25 4 (1,5 đ) Gọi x(cm) là độ dài cạnh góc vuông nhỏ; 0 < x <10 Thì độ dài cạnh góc vuông lớn là: x + 2 (cm) Áp dụng định lý Pitago vào tam giác vuông, ta có phương trình: x 2 + (x + 2) 2 = 10 2 2x 2 + 4x - 96 = 0 x 2 + 2x - 48 = 0 (tmđk) (loại) Hai cạnh góc vuông của tam giác vuông là: 6cm và 8cm. 0,25 0,25 0,25 0,25 0,25 0,25 2 2x x m= + 2 2 0x x m⇔ − − = ' 1 m∆ = + ' 1 0 1m m∆ = + > ⇒ > − ' 49 ' 7∆ = ⇒ ∆ = 1 6x⇒ = 2 8x⇒ = − 4 5 (4 đ) Vẽ hình, ghi GT,KL đúng 0,5 1) (góc nội tiếp chắn nửa đường tròn) (cùng bù với góc 90 0 ) Mà là hai góc đối nhau của tứ giác CMDE, suy ra tứ giác CMDE nội tiếp đường tròn đường kính CD. 0,25 0,25 0,25 2) BM và AE là đường cao của tam giác ABC, nên D là trực tâm của tam giác ABC, suy ra CH cũng là đường cao. Hai tam giác vuông CHB và AEB có góc B chung nên đồng dạng. 0,5 0,25 0,25 3) Tam giác vuông AMB có: Hình tạo thành khi quay tam giác vuông AMB quanh cạnh MB là hình nón đỉnh B, đường cao MB, bán kính đáy AM. 0,25 0,25 0,25 4) Gọi I là trung điểm của CD, nối MI. (tam giác OMB cân ở O) · · 0 E 90AMB A B= = · · 0 D D 90CM CE= = · · 0 D D 180CM CE⇒ + = · · D à DCM v CE . . BC BH BE BC BH BA BA BE ⇒ = ⇔ = · 0 3 .sin 2R.sin 60 2R. 3 2 MB AB MAB R= = = = · 0 1 . os 2R. os60 2R. 2 MA AB c MAB c R= = = = 3 2 2 1 1 3 . . . . 3 3 3 3 R V AM BM R R π π π = = = ¶ µ 1 1 M B= 5 1 1 I M E D H O C B A (tam giác CMI cân ở I) Mà (cùng phụ với ) Suy ra Ta có , hay Suy ra MI là tiếp tuyến của đường tròn (O, R) tại M. Chứng minh tương tự có EI là tiếp tuyến của đường tròn (O, R) tại E. Vậy các tiếp tuyến tại M và E của đường tròn (O) cắt nhau tại một điểm nằm trên đường thẳng CD, đó chính là trung điểm I của đoạn thẳng CD. 0,25 0,25 0,25 0,25 Ghi chú: Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm từng phần như hướng dẫn quy định. · 0 O 90IM = 6 · · ¶ · 0 0 1 D 90 D 90CMI IM M IM+ = ⇒ + = · ¶ 1 CMI M= · MAB · µ 1 MCI B= · · MCI CMI= SỞ GIÁO DỤCĐÀO TẠOTHI TUYỂN SINH LỚP 10 THPT TỈNH ĐĂK NÔNG Khóa ngày 21 tháng 6 năm 2010 MÔN THI: TOÁN Thời gian: 120 phút (Không kể thời gian giao đề) Stt Họ và tên giáo viên Giáo viên trường Ghi chú 1 Lê văn Trung THPT Quang Trung 2 Nguyễn Trọng Nga THCS Nguyến Tất Thành Mức độ Nội dung Nhận biết Thông hiểu Vận dụng Tổng Rút gọn biểu thức 0,5 0,5 0,5 1,5 Hàm số và đồ thị 0,5 0,5 0,5 1,5 Phương trình và hệ phương trình 1,25 0,75 0,1 3 Góc và đường tròn 1,25 1,75 1 4,0 Tổng 3,5 3,5 3 10 7 . án m vẫn đúng thì cho đủ đi m từng phần như hướng dẫn quy định. · 0 O 90IM = 6 · · ¶ · 0 0 1 D 90 D 90CMI IM M IM+ = ⇒ + = · ¶ 1 CMI M= · MAB · µ 1 MCI. tam giác vuông AMB quanh cạnh MB là hình nón đỉnh B, đường cao MB, bán kính đáy AM. 0,25 0,25 0,25 4) Gọi I là trung đi m của CD, nối MI. (tam giác OMB

Ngày đăng: 28/08/2013, 08:01

HÌNH ẢNH LIÊN QUAN

Bảng giá trị: - Đề thi tuyển sinh lớp 10 THPT năm học 2010 môn TOÁN – Sở giáo dục đào tạo TỈNH ĐẮK NÔNG
Bảng gi á trị: (Trang 3)
(4 đ) Vẽ hình, ghi GT,KL đúng - Đề thi tuyển sinh lớp 10 THPT năm học 2010 môn TOÁN – Sở giáo dục đào tạo TỈNH ĐẮK NÔNG
4 đ) Vẽ hình, ghi GT,KL đúng (Trang 5)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w