Chúng ta thường xuyên phải tiếp nhận, xửlý những thông tin mơ hồ, không chính xác, không chắc chắn, hoặc mang tính xác suất, ngẫu nhiên. Chúng ta cần phải ra quyết định khi xửlý thông tin?Các hệthống máy tính, dựa trên lý thuyết cổđiển (tập hợp, logic nhịphân), không thểlý luận như con người bởi vì chúng không có câu trảlời hoàn toàn đúng. Từđó dẫn đến yêu cầu một cách tiếp cận giải quyết các vấn đềnày: TÍNH TOÁNMỀM (SOFT COMPUTING).Ý tưởng vềtính toán mềm được bắt đầu vào năm 1981 bởi Lotfi A. Zadeh. Zadeh xác định tính toán mềm thành 1 hệthống hợp nhất giữa các lĩnh vực Logic mờ(Fuzzy Logic), mạng Neural, tính toán tiến hóa và di truyền, và tính toán dựa trên xác suất.Ngày nay,Logic mờ(Fuzzy Logic) có phạm vi ứng dụng rộng rãi trên thếgiới, từnhững hệthống cao cấp phức tạp như những hệdựbáo, nhận dạng, robot,người máy, trí thông minh nhân tạo,vệtinh, du thuyền, máy bay... đến những đồdùng hằng ngàynhư máy giặt, máy điều hoà không khí, máy chụp hình tựđộng.Bài tập lớnnày của nhóm là kết quảtìm hiểu vềLogic mờ, phương pháp xây dựng một hệđiều khiển mờđiển hình và minh hoạlý thuyết bằng một hệmờđơn giản đểđiều khiển máy giặt.Với máy giặt thật, nó còn kiểm tra xem cần bao nhiêu xà phòng, cần thêm bao nhiêu nước, phải quay nhanh thếnào, theo hướng nào... Nếu muốn vẽđồthịcho từng tính toán của máy giặt Logic mờthì nhómsẽcó một bộđiều khiểnkhá phức tạp. Vìlý do khách quan là hạn hẹp vềthời gian và lượng kiến thức,nênởđây nhómchỉgiới hạn ởhai yếu tố: độbẩn và sốlượng quần áo cần giặt.
TRƯỜNG ĐẠI HỌC CƠNG NGHIỆP HÀ NỘI Khoa Cơng Nghệ Thơng Tin BÀI TẬP LỚN Một số phương pháp tính tốn mềm Đề Tài: Ứng dụng mơ hình logic mờ Mamdani điều khiển máy giặt theo luật hợp thành MAX - MIN Giảng Viên Hướng Dẫn: T.S Đỗ Văn Tuấn LT CĐ-ĐH KHMT2 K12 Lớp: Nhóm Sinh Viên Thực Hiện: Phan Thị Hạnh 2017607344 Nguyễn Trọng Huy Nguyễn Văn Vận 2017607342 2017607128 Hà Nội, tháng 06 năm 2018 Mục Lục LỜI NÓI ĐẦU Phần I TÍNH TOÁN MỀM (SOFT COMPUTING) Giới thiệu tính tốn mềm Phân biệt Tính Tốn Mềm Tính Tốn Cứng .6 Mục tiêu tính tốn mềm Các kỹ thuật tính tốn mềm Ứng dụng tính tốn mềm .7 Phần II LOGIC MỜ 2.1 Tập Mờ .10 2.1.1 Tập mờ khái niệm tập mờ 10 2.1.2 Các dạng hàm thuộc tiêu biểu 12 2.1.3 Các khái niệm liên quan 13 2.1.4 Các phép toán tập mờ 14 2.1.5 Các phép toán mở rộng 15 2.2 Số Mờ 20 2.2.1 Định nghĩa số mờ 20 2.2.2 Các phép toán 20 2.2.3 Nguyên lý suy rộng Zadeh 20 2.3 Logic Mờ .23 2.3.1 Biến ngôn ngữ 23 2.3.2 Mệnh đề mờ 24 2.3.4 Luật modus-ponens tổng quát 27 Phần III HỆ MỜ 29 3.1 Kiến trúc hệ mờ tổng quát .29 3.2 Cơ sở luật mờ 30 3.3 Bộ suy diễn mờ .31 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 3.3.1 Trường hợp đầu vào luật 31 3.3.2 Trường hợp hai đầu vào luật 32 3.3.3 Trường hợp nhiều đầu vào nhiều luật 33 3.4 Bộ mờ hóa 33 3.4.1 Mờ hóa đơn trị 34 3.4.2 Mờ hóa Gaus 34 3.4.4 Mờ hoá tam giác 34 3.5 Bộ giải mờ 34 3.5.1 Phương pháp lấy max 35 3.5.2 Phương pháp lấy trọng tâm 35 3.5.3 Phương pháp lấy trung bình tâm 35 3.6 Hệ mờ hệ xấp xỉ vạn 36 3.7 So sánh hệ mờ với mạng nơron 36 Phần IV THIẾT KẾ HỆ ĐIỀU KHIỂN MỜ 38 PHẦN V HỆ ĐIỀU KHIỂN MÁY GIẶT 40 5.1 Giá trị đầu vào (Input): 40 5.2 Giá trị đầu (Output): 41 5.3 Tập Luật .41 5.4 Hàm thành viên 42 5.5 Máy giặt biến (độ bẩn, số lượng, thời gian) .43 5.6 Hình ảnh minh hoạ .46 Phần VI TÀI LIỆU THAM KHẢO 63 PHẦN VII MỘT SỐ THUẬT NGỮ 66 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN LỜI NÓI ĐẦU Chúng ta thường xuyên phải tiếp nhận, xử lý thông tin mơ hồ, khơng xác, khơng chắn, mang tính xác suất, ngẫu nhiên Chúng ta cần phải định xử lý thông tin? Các hệ thống máy tính, dựa lý thuyết cổ điển (tập hợp, logic nhị phân), lý luận người chúng khơng có câu trả lời hồn tồn Từ dẫn đến u cầu cách tiếp cận giải vấn đề này: TÍNH TỐN MỀM (SOFT COMPUTING) Ý tưởng tính tốn mềm bắt đầu vào năm 1981 Lotfi A Zadeh Zadeh xác định tính tốn mềm thành hệ thống hợp lĩnh vực Logic mờ (Fuzzy Logic), mạng Neural, tính tốn tiến hóa di truyền, tính toán dựa xác suất Ngày nay, Logic mờ (Fuzzy Logic) có phạm vi ứng dụng rộng rãi giới, từ hệ thống cao cấp phức tạp hệ dự báo, nhận dạng, robot, người máy, trí thông minh nhân tạo, vệ tinh, du thuyền, máy bay… đến đồ dùng ngày máy giặt, máy điều hồ khơng khí, máy chụp hình tự động Bài tập lớn nhóm kết tìm hiểu Logic mờ, phương pháp xây dựng hệ điều khiển mờ điển hình minh hoạ lý thuyết hệ mờ đơn giản để điều khiển máy giặt Với máy giặt thật, kiểm tra xem cần xà phòng, cần thêm nước, phải quay nhanh nào, theo hướng Nếu muốn vẽ đồ thị cho tính tốn máy giặt Logic mờ nhóm có điều khiển phức tạp Vì lý khách quan hạn hẹp thời gian lượng kiến thức, nên nhóm giới hạn hai yếu tố: độ bẩn số lượng quần áo cần giặt Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN Phần I TÍNH TỐN MỀM (SOFT COMPUTING) Giới thiệu tính tốn mềm TÍNH TỐN MỀM phương hướng để xây dựng hệ thống thông minh, bắt chước trí thơng minh người (intelligent systems) Tính tốn mềm khác với tính tốn cứng (hard computing): Có thể chấp nhận thiếu xác, khơng chắn, xấp xỉ; tính tốn mềm dẻo với chi phí vừa phải Tính tốn mềm: Khơng phải ngành học hay mơn học riêng biệt Tính tốn mềm khơng phải hỗn hợp, kết hợp giải thuật Tính tốn mềm mối quan hệ đối tác hướng tiếp cận tính tốn đối tác đóng góp phương pháp riêng biệt để giải vấn đề phạm vi Aristotle đặt khái niệm cho logic cổ điển, phát biểu luật trung & luật phi mâu thuẫn Logic cổ điển áp dụng thành cơng tốn học Plato người đặt tảng cho Logic mờ cho giá trị thứ ba “khác đúng, sai” Vào năm 1900, Lukasiewicz đề xuất Logic “3 giá trị”, giá trị thứ ba mơ tả “có thể” Sau đó, ơng đề nghị tiếp logic “4 giá trị”, logic “5 giá trị” Lukasiewicz cảm thấy logic “ba giá trị” logic “vô hạn giá trị” có nhiều điểm tương đồng Năm 1965, Lotfi A.Zadeh xuất báo “Fuzzy set” mơ tả tốn học lí thuyết “Fuzzy set” “Fuzzy Logic” Zadeh đề nghị định nghĩa tập mờ hàm thành viên (membership function) nhận giá trị [0.0,1.0] Vào thời gian phép tính tốn cho Logic đề nghị Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN Phân biệt Tính Tốn Mềm Tính Tốn Cứng Tính tốn truyền thống, hay gọi tính tốn cứng (hard computing), phương pháp sử dụng kỹ thuật tính tốn, dựa liệu đầu vào để đưa kết cuối cách xác theo yêu cầu toán Bảng đưa số điểm khác biệt tính tốn mềm tính tốn cứng để có nhìn cụ thể tính tốn mềm Điểm so sánh Dữ liệu xử lý Kết đầu Tính Tốn Cứng Tính Tốn Mềm Xử lý tốn dựa Khơng đòi hỏi liệu số liệu xác phải xác Yêu cầu đưa kết Yêu cầu đưa kết tối ưu gần tối ưu Kỹ thuật tính tốn dựa Kỹ thuật tính tốn Sử dụng tính tốn truyền Heuristic sử thống dụng phổ biến Thời gian tính tốn Thời gian tính tốn Thời gian tính tốn nhanh với chi phí thường chậm thấp Các tốn khơng u cầu lời giải xác, Lĩnh vực áp dụng Các toán yêu cầu lời song phải đưa kết giải xác, khơng khoảng thời cho phép sai lệch gian định với chi phí định Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN Mục tiêu tính tốn mềm Mục tiêu tính tốn mềm: • Phát triển máy thơng minh để tìm giải pháp cho vấn đề giới thực, vấn đề khơng theo mơ hình cụ thể, q khó khăn mơ hình hóa tính tốn • Khai thác khả tính tốn liệu thiếu xác, khơng chắn, gần để người đưa định tối ưu Có thể coi tính tốn mềm lĩnh vực tính tốn để xây dựng hệ trí tuệ nhân tạo, gọi trí tuệ máy tính Các kỹ thuật tính tốn mềm Cơng nghệ tính tốn mềm gồm thành phần sau: • Giải thuật di truyền • Logic mờ • Mạng Nơron • … Ứng dụng tính tốn mềm • Các hệ chuyên gia thương mại, kinh doanh, dịch vụ • Các hệ hỗ trợ định thương mại, kinh doanh, dịch vụ • Các chương trình ứng dụng lĩnh vực: - Điều khiển - Sản phẩm tiêu dùng; hệ thống công nghiệp - Các hệ thống tự động hóa; phân tích định - Y học; địa chất - Nhận dạng mẫu; robotics, Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN • Các lĩnh vực ứng dụng mới: - Lý thuyết tính tốn - Xử lý ngơn ngữ tự nhiên - Tài chính, Y sinh, Luật học - Cơng tác dự báo Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN Phần II LOGIC MỜ Logic mờ công bố lần Mỹ vào năm 1965 giáo sư Lotfi Zadeh Kể từ đó, logic mờ có nhiều phát triển qua chặng đường sau: phát minh Mỹ, áp dụng Châu Âu đưa vào sản phẩm thương mại Nhật Ứng dụng logic mờ vào công nghiệp thực Châu Âu, khoảng sau năm 1970 Tại trường Queen Mary Luân Đôn – Anh, Ebrahim Mamadani dùng logic mờ để điều khiển máy nước mà trước ông điều khiển kỹ thuật cổ điển Và Đức, Hans Zimmermann dùng logic mờ cho hệ định Liên tiếp sau đó, logic mờ áp dụng vào lĩnh vực khác điều khiển lò xi măng, … không chấp nhận rộng rãi công nghiệp Kể từ năm 1980, logic mờ đạt nhiều thành công ứng dụng định phân tích liệu Châu Âu Nhiều kỹ thuật logic mờ cao cấp nghiên cứu phát triển lĩnh vực Cảm hứng từ ứng dụng Châu Âu, công ty Nhật bắt đầu dùng logic mờ vào kỹ thuật điều khiển từ năm 1980 Nhưng phần cứng chuẩn tính tốn theo giải thuật logic mờ nên hầu hết ứng dụng dùng phần cứng chuyên logic mờ Một ứng dụng dùng logic mờ nhà máy xử lý nước Fuji Electric vào năm 1983, hệ thống xe điện ngầm Hitachi vào năm 1987 Những thành công tạo nhiều quan tâm Nhật Có nhiều lý để giải thích logic mờ ưa chuộng Thứ nhất, kỹ sư Nhật thường giải pháp đơn giản, sau sâu vào vấn đề Phù hợp với việc logic mờ cho phép tạo nhanh mẫu tiến đến việc tối ưu Thứ hai, hệ dùng logic mờ đơn giản dễ hiểu Sự “thông minh” hệ không nằm Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN hệ phương trình vi phân hay mã nguồn Cũng việc kỹ sư Nhật thường làm việc theo tổ, đòi hỏi phải có giải pháp để người tổ hiểu hành vi hệ thống, chia ý tưởng để tạo hệ Logic mờ cung cấp cho họ phương tiện minh bạch để thiết kế hệ thống Và văn hóa, người Nhật không quan tâm đến logic Boolean hay logic mờ; tiếng Nhật , từ “mờ‟ không mang nghĩa tiêu cực Do đó, logic mờ dùng nhiều ứng dụng thuộc lĩnh vực điều khiển thông minh hay xử lý liệu Máy quay phim máy chụp hình dùng logic mờ để chứa đựng chuyên môn người nghệ sĩ nhiếp ảnh Misubishi thông báo xe giới dùng logic mờ điều khiển, nhiều hãng chế tạo xe khác Nhật dùng logic mờ số thành phần Trong lĩnh vực tự động hóa, Omron Corp có khoảng 350 phát minh logic mờ Ngồi ra, logic mờ dùng để tối ưu nhiều q trình hóa học sinh học 2.1 Tập Mờ 2.1.1 Tập mờ khái niệm tập mờ Một tập hợp khơng gian đó, theo khái niệm cổ điển chia không gian thành phần rõ ràng Một phần tử không gian thuộc không thuộc vào tập cho Tập hợp gọi tập rõ Lý thuyết tập hợp cổ điển tảng cho nhiều ngành khoa học, chứng tỏ vai trò quan trọng Nhưng yêu cầu phát sinh khoa học sống cho thấy lý thuyết tập hợp cổ điển cần phải mở rộng Ta xét tập hợp người trẻ Ta thấy người 26 tuổi rõ ràng trẻ người 60 tuổi rõ ràng khơng trẻ Nhưng người có tuổi từ 26 đến 60 có thuộc tập hợp người trẻ hay không? Nếu áp dụng khái niệm tập hợp cổ điển ta phải định ranh giới rõ ràng mang tính chất áp đặt chẳng hạn 45 để xác định tập hợp người trẻ Và thực tế có ranh giới Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 10 Biến số lượng quần áo (độ nhiều quần áo) (No.Clothes) theo mục 5.4 Hàm thành viên có giá trị quần áo (NoC.Low), quần áo vừa vừa (NoC.Medium), quần áo nhiều (NoC.Hight) Có Range số lượng quần áo [0 100], Params quần áo [0 50], quần áo vừa vừa [0 50 100], quần áo nhiều [50 100 100] Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 52 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 53 Biến số thời gian máy giặt chạy (TimetoWash) theo mục 5.4 Hàm thành viên có giá trị giặt ngắn (T.VeryShort), giặt ngắn (T.Short), giặt bình thường (T.Normal), giặt lâu (T.Long), giặt lâu (T.VeryLong) Có Range thời gian giặt [0 60], Params giặt ngắn [0 18], giặt ngắn [4 18 32], giặt bình thường [18 32 60], giặt lâu [32 46 60], giặt lâu [46 60 60] Mặc định MATLAB tạo biến đầu trường hợp TimetoWash có hàm thuộc Mà theo mục 4, TimetoWash có hàm thuộc Vì cần tạo thêm cho hàm thuộc chỉnh sửa hàm thuộc phần Membership function plot Để cho dễ làm việc nên xoá hết hàm thuộc thêm Thêm cách chọn Edit > Add MFs… từ cửa sổ Membership Function Editor Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 54 Chọn kiểu hàm thuộc trimf (MF type) số hàm thuộc (Number of MFs): Tiến hành đặt tên hàm thuộc, thay đổi độ rộng biến, chỉnh sửa hàm thuộc cho với giá trị hàm thành viên tính tốn từ phần 5.4 Hàm thành viên Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 55 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 56 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 57 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 58 Như biến đầu vào, đầu hàm thành viên cài đặt thành công Phần thiết lập tập luật cho chương trình Để thiết lập luật, chọn Edit > Rules… sử dụng phím tắt Ctrl + Cửa sổ thiết lập tập luật biến ngơn ngữ: Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 59 Thiết lập tập luật theo bảng từ phần Tập luật cách sử dụng phím Add rule theo trường hợp: Sau thiết lập luật, sử dụng phím Close để đóng cửa sổ chỉnh sửa tập luật Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 60 Để xem kết sau chạy tập luật, chọn View > Rules sử dụng phím tắt Ctrl + Thiết lập đầu vào mục Input sử dụng chuột để kéo màu đỏ biến đầu vào DirtyLevel No.Clothes để có biến đầu TimetoWash Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 61 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 62 Phần VI TÀI LIỆU THAM KHẢO - Bài giảng Tính toán mềm, TS Đỗ Văn Tuấn - Soft Computing, Wikipedia - https://en.wikipedia.org/wiki/Soft_computing - Heuristic, Wikipedia, https://vi.wikipedia.org/wiki/Heuristic - Fuzzy Logic Toolbox, https://www.mathworks.com/products/fuzzy-logic.html - Getting Started with Fuzzy Logic Toolbox, https://www.youtube.com/watch?v=O348HnWPm7A - Fuzzy logic via Computing With Words: Case Studies – ResearchGate, - Novák, V., Perfilieva, I and Močkoř, J (1999) Mathematical principles of fuzzy logic Dodrecht: Kluwer Academic ISBN 0-7923-8595-0 - "Fuzzy Logic" Stanford Encyclopedia of Philosophy Bryant University 200607-23 Retrieved 2008-09-30 - Zadeh, L.A (1965) "Fuzzy sets" Information and Control (3): 338–353 doi:10.1016/s0019-9958(65)90241-x 10 - Pelletier, Francis Jeffry (2000) "Review of Metamathematics of fuzzy logics" (PDF) The Bulletin of Symbolic Logic 11 - Pelletier, Francis Jeffry (2000) "Review of Metamathematics of fuzzy logics" (PDF) The Bulletin of Symbolic Logic (3): 342–346 doi:10.2307/421060 JSTOR 421060 Archived (PDF) from the original on 2016-03-03 12 - Zadeh, L A et al 1996 Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, World Scientific Press, ISBN 981-02-2421-4 13 - Wierman, Mark J "An Introduction to the Mathematics of Uncertainty: including Set Theory, Logic, Probability, Fuzzy Sets, Rough Sets, and Evidence Theory" (PDF) Creighton University Archived (PDF) from the original on 30 July 2012 Retrieved 16 July 2016 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 63 14 - Zaitsev, D.A.; Sarbei, V.G.; Sleptsov, A.I (1998) "Synthesis of continuousvalued logic functions defined in tabular form" Cybernetics and Systems Analysis 34 (2): 190–195 doi:10.1007/BF02742068 15 - Kosko, B (June 1, 1994) "Fuzzy Thinking: The New Science of Fuzzy Logic" Hyperion 16 - Bansod, Nitin A., Marshall Kulkarni, and S.H Patil (Bharati Vidyapeeth College of Engineering) "Soft Computing- A Fuzzy Logic Approach" Soft Computing (Allied Publishers 2005) (page 73) 17 - Gerla,, G (2016) "Comments on some theories of fuzzy computation" International Journal of general Systems 45 (4): 372–392 doi:10.1080/03081079.2015.1076403 18 - "Lofti Zadeh Berkeley" Archived from the original on 2017-02-11 19 - "Fuzzy Sets" Archived from the original on 2009-04-13 20 - Novák, V (2005) "Are fuzzy sets a reasonable tool for modeling vague phenomena?" Fuzzy Sets and Systems 156: 341–348 doi:10.1016/j.fss.2005.05.029 21 - Valiant, Leslie, (2013) Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World New York: Basic Books ISBN 978-0465032716 22 - "Archived copy" (PDF) Archived (PDF) from the original on 2015-10-04 Retrieved 2015-10-02 23 - Cejas, Jesús, (2011) Compensatory Fuzzy Logic La Habana: Revista de Ingeniería Industrial ISSN 1815-5936 24 - Giovanni Acampora, Bruno N Di Stefano, Autilia Vitiello: IEEE 1855TM: The First IEEE Standard Sponsored by IEEE Computational Intelligence Society [Society Briefs] IEEE Comp.Int Mag 11(4): 4–6 (2016) 25 - Di Stefano, Bruno N (2013) "On the Need of a Standard Language for Designing Fuzzy Systems" 296: 3–15 doi:10.1007/978-3-642-35488-5_1 ISSN 1434-9922 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 64 26 - Acampora, Giovanni; Loia, Vincenzo; Lee, Chang-Shing; Wang, Mei-Hui (2013) "On the Power of Fuzzy Markup Language" 296 doi:10.1007/978-3-64235488-5 ISSN 1434-9922 Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 65 PHẦN VII MỘT SỐ THUẬT NGỮ approximate reasoning center of gravity Confidence Conjuntive suy luận xấp xỉ trọng tâm độ tin cậy phép hội nhân tập mờ, tập rõ gồm phần tử có giá trị hàm Core thuộc = crisp set tập rõ defineable set tập xác định Defuzzier giải mờ Disjunctive phép tuyển elementary set tập bản, tập sở, vũ trụ tập mờ định nghĩa Fuzzier mờ hoá fuzzy inference engine suy diễn mờ fuzzy logic logic mờ fuzzy rule base sở luật mờ fuzzy set tập mờ phương pháp tính luật modus-ponens mờ dùng T-norm max-min S-norm max phương pháp tính luật modus-ponens mờ dùng T-norm tích max-prod S-norm max membership function hàm thuộc, hàm thành viên MIMO (Multi Input Multi Output) hệ mờ nhiều đầu vào nhiều đầu MISO (Multi Input Single Output) hệ mờ nhiều đầu vào đầu precise set tập xác product fuzzy conjunction giao mờ tích rule aggregation kết hợp luật SISO (Single Input Single Output) hệ mờ đầu vào đầu S-norm S-chuẩn hay T-đối chuẩn, hàm tổng quát hóa từ hàm max Support giá tập mờ, tập rõ gồm phần tử có giá trị hàm thuộc > T-norm T-chuẩn, hàm tổng quát hóa từ hàm weighted sum tổng có trọng số Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 66 ... mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN 21 c A.B E.F d A/B E/F Một số phương pháp tính tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển. .. tốn mềm Ứng dụng mơ hình logic mờ M amdani điều khiển máy giặt theo luật hợp thành M AX - M IN Phần II LOGIC MỜ Logic mờ công bố lần Mỹ vào năm 1965 giáo sư Lotfi Zadeh Kể từ đó, logic mờ có nhiều... logic mờ vào kỹ thuật điều khiển từ năm 1980 Nhưng phần cứng chuẩn tính toán theo giải thuật logic mờ nên hầu hết ứng dụng dùng phần cứng chuyên logic mờ Một ứng dụng dùng logic mờ nhà máy xử