Nghiên cứu nâng cao hiệu quả bộ xúc tác tạo khí giàu hyđrô trên động cơ xăng

137 120 0
Nghiên cứu nâng cao hiệu quả bộ xúc tác tạo khí giàu hyđrô trên động cơ xăng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

LỜI CAM ĐOAN Tôi xin cam đoan đề tài nghiên cứu tơi thực Luận án có sử dụng phần kết tơi nhóm nghiên cứu thực Đề tài cấp nhà nước “Nghiên cứu phát triển cơng nghệ tạo khí giàu hyđrơ để bổ sung cho động xăng nhằm nâng cao hiệu sử dụng nhiên liệu giảm phát thải cho động cơ” mã số KC.05.24/11-15 GS Lê Anh Tuấn chủ nhiệm đề tài tổ chức chủ trì Trường Đại học Bách Khoa Hà Nội Tơi chủ nhiệm đề tài đồng ý cho sử dụng phần kết đề tài cấp nhà nước vào việc viết luận án Tôi xin cam đoan số liệu kết nêu luận án trung thực chưa công bố cơng trình khác Hà Nội, tháng … năm 2019 Tập thể giáo viên hướng dẫn Nghiên cứu sinh GS Phạm Minh Tuấn TS Nguyễn Thế Lương Trần Văn Hồng -i- LỜI CẢM ƠN Tơi xin chân thành cảm ơn Trường Đại học Bách khoa Hà Nội, Viện Sau đại học, Viện Cơ khí Động lực, Bộ mơn Động đốt trong, Phòng thí nghiệm Động đốt cho phép giúp đỡ thực luận án thời gian học tập, nghiên cứu Trường Đại học Bách khoa Hà Nội Tôi xin chân thành cảm ơn GS.TS Lê Anh Tuấn cho phép sử dụng phần kết đề tài để hồn thành luận án Tơi xin bày tỏ lòng biết ơn sâu sắc đến GS.TS Phạm Minh Tuấn TS Nguyễn Thế Lương chu đáo tận tình hướng dẫn, giúp đỡ tơi thực hồn thành luận án Cuối cùng, xin gửi lời cảm ơn chân thành tới gia đình bạn bè, nguời ln động viên khuyến khích tơi suốt thời gian học tập Trường Đại học Bách khoa Hà Nội Nghiên cứu sinh Trần Văn Hoàng - ii - MỤC LỤC LỜI CẢM ƠN ii DANH MỤC CHỮ VIẾT TẮT VÀ KÝ HIỆU vi DANH MỤC HÌNH VẼ, ĐỒ THỊ .ix DANH MỤC BẢNG BIỂU xiv LỜI MỞ ĐẦU i Xuất xứ đề tài ii Mục tiêu nghiên cứu iii Phạm vi nghiên cứu iv Phƣơng pháp nghiên cứu .2 v Ý nghĩa khoa học thực tiễn đề tài vi Bố cục luận án CHƢƠNG TỔNG QUAN VỀ NÂNG CAO HIỆU QUẢ BỘ XÚC TÁC TẠO KHÍ GIÀU HYĐRƠ 1.1 Tổng quan nhiên liệu khí giàu hyđrơ 1.1.1 Tính chất nhiên liệu khí giàu hyđrơ .4 1.1.2 Các phương pháp tạo khí giàu hyđrô 1.1.2.1 Phản ứng nhiệt hóa nhiên liệu hyđrơ carbon với nước 1.1.2.2 Phản ứng ơxy hóa nhiên liệu khơng hồn tồn 10 1.1.2.3 Phản ứng nhiệt hóa hyđrơ carbon với khí carbonic 11 1.2 Tình hình nghiên cứu sử dụng khí giàu hyđrơ giới Việt Nam 11 1.2.1 Các nghiên cứu sử dụng khí giàu hyđrô giới 11 1.2.2 Các nghiên cứu sử dụng khí giàu hyđrơ Việt Nam 14 1.3 Nghiên cứu nâng cao hiệu xúc tác tạo khí giàu hyđrô 15 1.3.1 Hiện trạng xúc tác tạo khí giàu hyđrơ 15 1.3.2 Nghiên cứu nâng cao hiệu xúc tác tạo khí giàu hyđrơ giới 17 1.3.3 Các nghiên cứu nâng cao xúc tác tạo khí giàu hyđrô Việt Nam .23 1.3.4 Giải pháp áp dụng 23 1.3.5 Cách tiếp cận vấn đề đề tài 24 1.4 Kết luận chƣơng 24 CHƢƠNG NGHIÊN CỨU LỰA CHỌN HỆ XÚC TÁC MỚI NHẰM TĂNG HIỆU QUẢ TẠO KHÍ GIÀU HYĐRƠ .26 - iii - 2.1 Cơ sở lý thuyết phản ứng xúc tác tạo khí giàu hyđrơ từ nhiên liệu 26 2.1.1 Cơ chế phản ứng xúc tác .26 2.1.2 Cơ chế phản ứng xúc tác xúc tác tạo khí giàu hyđrô .29 2.2 Điều chế xúc tác 36 2.2.1 Các phương pháp tẩm chất mang 37 2.2.2 Điều chế vật liệu xúc tác .38 2.3 Đặc tính cấu trúc, hình dạng bề mặt đánh giá hiệu xúc tác .40 ện tích bề mặt vật liệu xúc tác 41 mẫu xúc tác 41 44 2.3.4 Đánh giá hiệu suất tạo khí giàu hyđrơ 46 2.4 Kết luận chƣơng 56 CHƢƠNG NGHIÊN CỨU TÍNH TỐN THIẾT KẾ VÀ CHẾ TẠO HỆ THỐNG TẠO KHÍ GIÀU HYĐRƠ SỬ DỤNG HỆ XÚC TÁC NI-CU/AL2O3 58 3.1 Đối tƣợng nghiên cứu .58 3.2 Tính tốn thiết kế hệ thống tạo khí giàu hyđrơ xe máy 58 3.2.1 Tính tốn thiết kế hệ thống tạo khí giàu hyđrơ sử dụng xúc tác NiCu/Al2O3 động 60 3.2.2 Thiết kế xúc tác Ni-Cu/Al2O3 72 3.3 Chế tạo lắp đặt hệ thống tạo khí giàu hyđrơ sử dụng xúc tác NiCu/Al2O3 83 3.4 Kết luận chƣơng 86 CHƢƠNG NGHIÊN CỨU THỬ NGHIỆM ĐỘNG CƠ LẮP BỘ XÚC TÁC MỚI NI-CU/AL2O3 87 4.1 Phƣơng pháp, nhiên liệu trang thiết bị thử nghiệm 87 4.1.1 Phương pháp thử nghiệm 87 4.1.2 Nhiên liệu thử nghiệm 88 4.1.3 Trang thiết bị thử nghiệm 88 4.2 Kết thử nghiệm so sánh đặc tính kinh tế kỹ thuật phát thải động sử dụng xúc tác Ni-Cu/Al2O3 xúc tác Ni/Al2O3 88 4.2.1 Kết thử nghiệm so sánh theo đặc tính tốc độ 92 4.2.2 Kết thử nghiệm so sánh theo vị trí tay ga 50 km/h .99 4.2.3 Kết thử nghiệm sau chạy bền 5000 km với xúc tác NiCu/Al2O3 101 - iv - 4.3 Kết luận chƣơng 106 KẾT LUẬN VÀ HƢỚNG PHÁT TRIỂN .107 Kết luận 107 Hướng phát triển 107 TÀI LIỆU THAM KHẢO .109 PHỤ LỤC TRANG THIẾT BỊ THỬ NGHIỆM PL1 -v- DANH MỤC CHỮ VIẾT TẮT VÀ KÝ HIỆU Ký hiệu/Viết tắt Tiếng Anh Diễn giải Đơn vị λ Lambda Hệ số dư lượng khơng khí Suất tiêu thụ nhiên liệu có ích - ge g/kW.h Ne Cơng suất có ích kW ε - n Tỷ số nén Tỷ lệ nước cacbon Tốc độ động v/ph GTVT Giao thông vận tải - S/C Steam/carbon - ppm Part per million Hệ thống phân tích khí thải Một phần triệu LPG Liquefied Petroleum Gas Khí hóa lỏng - CNG Compressed Natural Gas Hydrogen/ Compressed Natural Gas Khí thiên nhiên nén Hỗn hợp nhiên liệu hyđrơ/CNG Nhiệt hóa nhiên liệu với khí carbonic - Động đốt - Bộ sắc kí khí Oxi hóa khơng hồn tồn nhiên liệu Nhiệt hóa nhiên liệu với nước Vận tốc không gian - CEBII HCNG CR Carbon Reforming ĐCĐT GC Gas Chromatography PO Partial Oxidation SR Stream Reforming GHSV Gas Hourly Space Velocity HRG Hydrogen Rich Gas BET Brunauer-Emmett-Teller SEM Scanning electron microscope Energy Dispersive Spectroscopy EDS XRD X-Ray Diffraction - vi - Khí giàu hyđrơ Phương pháp đo diện tích bề mặt Kính hiển vi điện tử Phân tích thành phần hóa học vật rắn nhờ tia X Sử dụng nhiễu xạ tia X để phân tích cấu trúc vật liệu - - 1/lít - TPR Temperature programe reduction Phương pháp đánh giá đặc tính khử vật liệu theo nhiệt độ - ECU Electronic Control Unit Bộ điều khiển điện tử - CD 20” Chassis dynamometer 20’’ X-ray Photoelectron Spectroscopy Băng thử xe máy Sử dụng tia X để phân tích cấu trúc vật liệu - MCH Methylcy-clohexane C6H11CH3 - S/O/C Steam Oxygen Gasoline Tỷ lệ nước, ôxy xăng RON Research Octan Number XPS Rj Trị số ốctan nghiên cứu Tốc độ động học phản ứng - mol/(g cat s) R Hằng số khí m3·Pa·mol1 -1 ·K outlet Ftotal Tổng lưu lượng khí đầu ml/ph X stoutlet Nồng độ khí mang đầu % thể tích δ Tổng lưu lượng khí đầu vào Nồng độ khí mang đầu vào Hệ số cản cục A1 Tiết diện ống đầu vào mm2 A2 Tiết diện ống đầu mm2 VXL inlet Ftotal X stinlet G Gate Vi xử lý Cực điều khiển moffet MOSFET Metal-Oxide Semiconductor Field-Effect Transistor) transistor Trường oxit kim loại – bán dẫn XCK Chân xung nhịp vi điều khiển TxD Transmitted Data Chân truyền liệu RxD Received Data Chân nhận liệu Máy tính để bàn PC - vii - ml/ph % thể tích COMx Communication Cổng kết nối số x RxD Received data Jack kết nối cổng com có số chân x Phát sóng mang liệu Dữ liệu nhận TxD Transmitted data Dữ liệu truyền DTR Data terminal ready DTE sẵn sàng làm việc GND Ground Nối đất (0V) DSR Data set ready RTS Request to send CTS Clear to send RI Ring indicator DCE sẵn sàng làm việc DTE yêu cầu truyền liệu DCE sẵn sàng nhận liệu Báo chuông RS232 Recommended Standard 232 Chuẩn giao tiếp 232 DBx DCD - viii - DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Giới hạn cháy hyđrô số loại nhiên liệu [4] Hình 1.2 Tốc độ lửa số hỗn hợp khí [3] Hình 1.3 Sơ đồ nguyên lý chung động sử dụng hồn hợp khí giàu hyđrô tác dụng chất xúc tác .12 Hình 1.4 Hiệu suất chuyển hóa iso ốctan theo vận tốc không gian tỷ lệ S/C 850oC [31] 16 Hình 1.5 Sản phẩm hệ xúc tác Mo2C theo vận tốc không gian nhiệt độ 850oC[31] .16 Hình 1.6 Hiệu chuyển hóa n-ốctan tỷ lệ H2 sản phẩm H2O/C=3.0 [32] .17 Hình 1.7 Hiệu chuyển hóa n-ốctan tỷ lệ H2 sản phẩm hệ xúc tác PdNi/Al2O3 khi: ( ) O2/C8H18 = 1.0, H2O/C = 3.0; (0) O2/C8H18 = 2.0, H2O/C = 3.0 [32] .18 Hình 1.8 Độ bền xúc tác mẫu Ni-Pd/Al2O3 [32] 18 Hình 1.9 Hiệu chuyển hóa nhiên liệu xăng thành hỗn hợp khí giàu hyđrơ xúc tác Ni-Re/Al2O3 theo nhiệt độ carbon (S:C) tỷ lệ 1.7:1 vận tốc không gian 12 h-1 [33] 19 Hình 1.10 Hiệu suất chuyển hóa theo nhiệt độ theo tỷ lệ S/O/C S/C hệ xúc tác Ni-Re/Al2O3 vận tốc không gian h-1 [33] 19 Hình 1.11 Sự thay đổi hiệu suất phản ứng độ chọn lọc sản phẩm hệ xúc tác Cu/CeO2 theo nhiệt độ (pi-C8H8=1.5 kPa, pH2O=36 kPa, mcat=250mg, Ft=150 cm3/min) [34] .21 Hình 1.12 Đặc tính khử theo nhiệt độ mẫu xúc tác Ni-Cu [35] 22 Hình 1.13 Tốc độ phản ứng mẫu xúc tác Ni-Cu [35] 22 Hình 2.1 Biểu đồ lượng hoạt hóa phản ứng khơng chất xúc tác có mặt chất xúc tác đồng thể 27 Hình 2.2 Biểu đồ lượng hoạt hóa phản ứng khơng chất xúc tác có mặt chất xúc tác dị thể theo thuyết hấp thụ 28 - ix - Hình 2.3 Sơ đồ phản ứng xúc tác nhiên liệu nước nhờ tận dụng nhiệt khí thải 32 Hình 2.4 Quy trình điều chế hệ xúc tác Ni-Cu/γ-Al2O3 [42] .38 Hình 2.5 Kết XRD mẫu xúc tác 18% Ni1-x-Cux/Al2O3 (x= (a) 1; (b) 0,7; (c) 0,5; (d) 0,3; (e) 0,1; (f) 0) 42 Hình 2.6 Kết XRD mẫu Ni0,5-Cu0,5/Al2O3 thay đổi tỷ lệ Ni-Cu khối lượng hỗn hợp xúc tác (a) 36%; (b) 18%; (c) 6%; (d) 0% 43 Hình 2.7 Kết XRD mẫu xúc tác khác (a) 18% Ni0.5-Cu0.5/Al2O3; (b) 18% Ni0.5-Ce0.5/Al2O3; (c) 18% Ni0.5-Mo0.5/Al2O3 44 Hình 2.8 Ảnh SEM mẫu xúc tác thay đổi tỷ lệ Ni0,5-Cu0,5 hỗn hợp với γ-Al2O3 45 Hình 2.9 Hình ảnh SEM EDS mẫu xúc tác 18% Ni0,5-Cu0,5/ -Al2O3 .45 Hình 2.10 Sơ đồ thí nghiệm đánh giá hiệu xúc tác 46 Hình 2.11 Một số chi tiết hệ thống đánh giá hoạt tính xúc tác 47 Hình 2.12 Hệ thống đánh giá hoạt tính xúc tác sau lắp hồn thiện 48 Hình 2.13 Đặc tính TPR mẫu xúc tác 18% Ni1-x-Cux/Al2O3 (x= (a) 0; (b) 0,1; (c) 0,3; (d) 0,5; (e) 0,7; (f) 1) 51 Hình 2.14 Đặc tính TPR mẫu xúc tác khác (a) 18% Ni0.5-Mo0.5/ -Al2O3, (b) 18% Ni0.5-Ce0.5/ -Al2O3, (c) 36 % Ni0.5-Cu0.5/ -Al2O3, (d), 18 % Ni0.5-Cu0.5/ -Al2O3, (e) % Ni0.5-Cu0.5/ -Al2O3 52 Hình 2.15 Ảnh hưởng nhiệt độ tới hiệu chuyển hóa phân bố thành phần hỗn hợp khí mẫu xúc tác 18 % Ni0,5-Cu0,5/ -Al2O3, N2 = 15 cm3/ph, isô-ốctan = 0,03 g/ph, S/C =2 54 Hình 2.16 Ảnh hưởng thay đổi tỷ lệ khối lượng Ni0,5-Cu0,5 hỗn hợp với γAl2O3 tới hiệu chuyển hóa: T=550 oC; N2 = 15 cm3/ph; isô-ốctan = 0,03 g/ph; S/C=2 .55 Hình 2.17 Ảnh hưởng tỷ lệ mol Cu tới hiệu chuyển hóa mẫu xúc tác 18% Cux-Ni1-x/Al2O3: T=550 oC; N2 = 15 cm3/ph; isô-ốctan = 0,03 g/ph; S/C=2 56 Hình 3.1 Kết cấu xe máy Piaggio Liberty nguyên 59 Hình 3.2 Bản vẽ thiết kế hệ thống cung cấp xăng nước cho xúc tác 60 -x- ... nhiệt độ tự cháy cao nên nâng cao tỉ số nén mà khơng sợ bị cháy kích nổ, góp phần nâng cao hiệu suất động Tỉ số nén cao động làm việc với hồ khí nghèo mà cho hiệu suất công suất cao Nhiệt độ tự... nâng cao hiệu xúc tác tạo khí giàu hyđrơ 15 1.3.1 Hiện trạng xúc tác tạo khí giàu hyđrô 15 1.3.2 Nghiên cứu nâng cao hiệu xúc tác tạo khí giàu hyđrơ giới 17 1.3.3 Các nghiên cứu nâng cao. .. đòi hỏi nhiệt cấp vào nhiều trì nhiệt độ cao, 450-900oC [9-10] Tuy nhiên, nhiên liệu có mật độ lượng cao suất hàm lượng hyđrơ sản phẩm q trình nhiệt hóa cao, đạt gần tới giá trị hàm lượng hyđrơ

Ngày đăng: 04/04/2019, 06:07

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan