Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 39 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
39
Dung lượng
844,88 KB
Nội dung
Gv: Phạm Chí Trung 0906.489.009 TUYỂNTẬPHÌNHHỌCƠNTHIHỌCKÌ – TỐN LỚP Bài 1: Cho ABC cân A Lấy điểm D cạnh AB, điểm E cạnh AC cho BD CE Chứng minh a) DE // BC b) ABE ACD c) BID CIE (I giao điểm BE CD) � d) AI phân giác BAC e) AI BC f) Tìm vị trí D, E để BD = DE = EC DB EC DE Bài 2: Cho ADE cân A Trên cạnh DE lấy điểm B C cho a) ABC tam giác gì? Chứng minh b) Kẻ BM AD,CN AE Chứng minh BM = CN c) Gọi I giao điểm MB NC IBC tam giác gì? Chứng minh � d) Chứng minh AI phân giác BAC � Bài 3: Cho ABC (AB < AC) AM tia phân giác A Trên AC điểm D cho AD AB a) Chứng minh BM MD b) Gọi K giáo điểm AB DM Chứng minh DAK BAC c) Chứng minh AKC cân d) So sánh KM CM Bài 4: Cho ABC cân C Gọi D, E trung điểm cạnh AC, BC Các đường thẳng AE, BD cắt M Các đường thẳng AM, AB cắt I a) Chứng minh AE = BD b) Chứng minh DE // AB c) Chứng minh IM AB Từ tính IM trường hợp BC = 15cm, AB = 24cm d) Chứng minh AB 2BC CI 2AE Gv: Phạm Chí Trung 0906.489.009 Bài 5: Cho ABC cân A, đường cao AH Gọi G trọng tâm ABC Trên tia đối tia HG lấy điểm E cho HG = EH a) Chứng minh BG = CG = BE = CE b) Chứng minh ABE ACE c) Chứng minh AG = GE d) Biết AH = 9cm, BC = 8cm Tính BE, AB e) ABC thỏa mãn điều kiện để GBE tam giác o � � K �AB , kẻ Bài 6: Cho ABC vuông C, A 60 , tia phân giác BAC cắt BC E, kẻ EK AB BD AE D �AE a) Chứng minh AK = KB b) Chứng minh AD = BC � c) Gọi I giao điểm BD AC Chứng minh IE phân giác BIA d) Chứng minh BD, EK, AC đồng quy Bài 7: Cho tam giác ABC vuông A Từ điểm K thuộc cạnh BC, vẽ KH AC Trên tia đối tia HK lấy điểm I cho HI = HK Chứng minh: a) AB// HK b) Tam giác AKI cân � � c) BAK = AIK d) AIC = AKC Bài 8: Cho tam giác ABC cấn A Gọi M trung điểm cạnh BC a) Chứng minh ABM = ACM b) Từ M vẽ MH AB MK AC Chứng minh BH = CK c) Từ B vẽ BP AC, BP cắt MH I Chứng minh tam giác IBM cân � Bài 9: Cho tam giác ABC cân A ( A CE d) BE // AC � � c) BAM = MEC e) EC BC Bài 13: Cho tam giác ABC cân A, AB = AC = 5cm Kẻ AH BC (H BC) � � a) Chứng minh BH = HC BAH = CAH b) Tính độ dài BH biết AH = 4cm c) Kẻ HD AB (D AB); kẻ HE AC (E AC); tam giác ADE tam giác gì, sao? Bài 14: Cho tam giác ABC, AB = AC Trên tia đối tia BC lấy điểm D, tia đối tia CB lấy điểm E cho BD = CE Chứng minh: a) Tam giác ADE cân b) ABD = ACE Bài 15: Cho tam giác ABC, AB = AC Trên cạnh AB lấy điểm D, cạnh AC lấy điểm E cho AD = AE Gọi M giao điểm BE CD Chứng minh: a) BE = CD b) BMD = CME Gv: Phạm Chí Trung 0906.489.009 c) AM tia phân giác góc BAC Bài 16: Cho tam giác ABC, AB < AC, AD tia phân giác góc A Tên tia AC lấy điểm E cho AE = AB a) Chứng minh BD = DE b) Gọi K giao điểm đường thẳng AB ED Chứng minh DBK = DEC c) Tam giác AKC tam giác gì? Chứng minh: d) Chứng minh: AD KC Bài 17: Cho tam giác ABC vuông A Đường trung trực AB cắt AB E BC F a) Chứng minh FA = FB b) Từ F vẽ FH AC (H AC) Chứng minh FH EF c) Chứng minh FH = AE BC d) Chứng minh EH = EH //BC Bài 18: Cho tam giác ABC, AB < AC AM tia phân giác góc A Trân AC lấy điểm D cho AD = AB a) Chứng minh BM = MD b) Gọi K giao điểm AB DM Chứng minh DAK = BAC c) Chứng minh tam giac AKC cân d) So sánh KM CM Bài 19: Cho tam giác ABC có đường phân giác BH ( HAC) Kẻ HM vng góc với BC ( MBC) Gọi N giao điểm AB MH Chứng minh: a) Tam giác ABH tam giác MBH b) BH đường trung trực đoạn thẳng AM c) AM // CN d) BH CN Bài 20: Cho tam giác ABC vng C có đường phân giác góc BAC cắt BC E Kẻ EK AB K(KAB) Kẻ BD vng góc với AE ta D ( DAE) Chứng minh: a) Tam giác ACE tam giác AKE b) AE đường trung trực đoạn thẳng CK Gv: Phạm Chí Trung 0906.489.009 c) KA = KB d) EB > EC Bài 21: Cho tam giác ABC vng A có đường phân giác góc ABC cắt AC E Kẻ EH BC H (HBC) Chứng minh: a) Tam giác ABE tam giác HBE b) BE đường trung trực đoạn thẳng AH c) EC > AE Bài 22: Cho tam giác ABC vng A có đường cao AH 1) Biết AH = cm; HB = 2cm HC = 8cm: a) Tính độ dài cạnh AB, AC ˆ b) Chứng minh Bˆ > C 2) Gỉa sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC khơng đổi Tam giác ABC cần thêm điều kiện để khoảng cách BC nhỏ Bài 23: Cho tam giác ABC vng A có đường cao AH.Trên cạnh BC lấy điểm D cho BD = BA a) Chứng minh b) Chứng minh Từ suy AD tia phân giác HÂC c) Vẽ DKAC.Chứng minh AK = AH d) Chứng minh AB + AC < BC + AH Bài 24: Cho vuông A có AB = 6cm, AC = 8cm; đường phân giác BI Kẻ IHBC (HBC) Gọi K giao điểm AB IH a) Tính BC? b) Chứng minh: c) Chứng minh: BI đường trung trực đoạn thẳng AH d) Chứng minh: IA < IC e) Chứng minh I trực tâm Bài 25: Cho ABC vuông A, cạnh BC lấy điểm D cho BA = BD Từ D kẻ đường thẳng vng góc với BC, cắt AC E a) Cho AB = cm, AC = cm, tính BC? b) Chứng minh ABE = DBE Gv: Phạm Chí Trung 0906.489.009 c) Gọi F giao điểm DE BA, chứng minh EF = EC d) Chứng minh: BE trung trực đoạn thẳng AD Bài 26: ABC vuông A, đường phân giác BD Kẻ AE vuông góc BD, AE cắt BC K a) Chứng minh ABK cân B b) Chứng minh DK vuông góc BC c) Kẻ AH vng góc BC Chứng minh AK tia phân giác góc HAC d) Gọi I giao điểm AH BD Chứng minh IK // AC Bài 27: Cho V ABC có Â = 600 , AB DB Bài 28: ABC vuông A, đường phân giác BD Kẻ AE BD, AE cắt BC K a) Biết AC = cm, AB = 6cm Tính BC? b) ABK gì? c) Chứng minh DK BC d) Kẻ AH BC Chứng minh AK tia phân giác góc HAC Bài 29: Cho ABC có AB=3cm, AC=4cm, BC=5cm a) ABC gì? b) Vẽ BD phân giác góc B Trên cạnh BC lấy điểm E cho AB=AE Chứng minh: AD=DE c) Chứng minh: d) Kéo dài BA cắt ED F Chứng minh AE // FC Bài 30: Cho ABC cân A Kẻ AH BC H a) Chứng minh: ABH = ACH b) Vẽ trung tuyến BM Gọi G giao điểm AH BM Chứng G trọng tâm ABC Gv: Phạm Chí Trung 0906.489.009 c) Cho AB = 30cm, BH = 18cm Tính AH, AG d) Từ H kẻ HD song song với AC (D thuộc AB) Chứng minh ba điểm C, G, D thẳng hàng Bài 31: Cho ABC vuông A Biết AB = 3cm, AC = 4cm a) Tính BC b) Gọi M trung điểm BC Kẻ BH AM H, CK AM K Cm: BHM = CKM c) Kẻ HI BC I So sánh HI MK d) So sánh BH + BK với BC Bài 32 : Cho tam giác ABC vuông A Trên cạnh BC lấy điểm E cho BE = BA , tia BA lấy điểm F cho BF = BC Kẻ BD phân giác góc ABC ( D �AC ) Chứng minh : a) EF BC ; AE BD b) AD < AC c) VADF VEDC d) E , D , F thẳng hàng BÀi 33 : Cho tam giác ABC có AB < AC , tia phân giác AM Trên tia AC lấy điểm N cho AN = AB Gọi K giao điểm đường thẳng AB MN Chứng minh : a) MB = MN b) VMBK VMNC c) AM KC BN P KC d) AC - AB > MC - MB Bài 34 : Tam giác ABC vuông A Vẽ đường cao AH Trên cạnh BC lấy điểm D cho : BD = BA � a) Chứng minh : Tia AD tia phân giác HAC b) Vẽ DK vng góc AC (K thuộc AC ) CMR : AK = AH Gv: Phạm Chí Trung 0906.489.009 c) CMR : AB + AC < BC + AH Bài 35 : CHo tam giác ABC cân A , phân giác AD Trên tia đối tia AB lấy điểm E cho AE = AD Trên tia phân giác cuả góc CAE lấy điểm F cho AF = BD Chứng minh : a) AD BC b) AF // BC c) EF = AD d) Ba điểm E , F , C thẳng hàng Bài 36: Cho tam giác ABC Gọi E , F theo thứ tự trung điểm cạnh AB , AC Trên tia đối tia FB lấy điểm P cho PF = BF Trên tia đối EC lấy điểm Q cho QE = CE a) Chứng minh : AP = AQ b) Chứng minh : điểm P , A, Q thẳng hàng c) BQ // AC CP // AB d) Gọi R giao PC QB Chứng minh chu vi : VPQR 2VABC e) Chứng minh : đường thẳng AR ; BP ; CQ đồng quy Bài 37 : Cho tam giác ABC cân A có BC < AB Đường trung trực AC cắt đương thẳng BC M Trên tia đối tia AM lấy điểm N cho AN = BM � � a) Chứng minh : AMC BAC b) Chứng minh : CM = CN c) Muốn cho CM CN tam giác cân ABC cần thêm điều kiện ? Bài 38 : Cho tam giác ABC cân A có góc A nhọn , hai đường cao BD CE cắt H a) Chứng minh : AE = AD � b) Chứng minh : AH tia phân giác góc BAC AH trung trực ED Gv: Phạm Chí Trung 0906.489.009 c) So sánh HE HC � � d) Qua E kẻ EF // BD ( F �AC ) , tia phân giác ACE cắt ED I Tính EFI � �120 A Vẽ phía ngồi ABC tam giác ABD ACE Gọi O ABC Bài 39: Cho cân A giao điểm BE CD Chứng minh a) BE = CD b) OBC cân c) D E cách đường thẳng BC Bài 40: Cho ABC vuông A Đường trung trực AB cắt AB E BC F a) Chứng minh: FA = FB b) Từ F kẻ FH AC H �BC Chứng minh: FH EF c) Chứng minh: FH = AE EH BC d) Chứng minh: EH // BC Bài 41: Cho ABC có AB < BC, phân giác BD Trên BC lấy điểm E cho BE = AB Chứng minh a) AD = DE b) Gọi F giao điểm đường thẳng AB đường thẳng DE Chứng minh: ADF EDC c) Chứng minh AD < DC d) Trên tia đối tia CB lấy điểm K cho CK = AF Gọi I giao điểm AK CF Chứng minh trung điểm AK Bài 42: Cho ABC vng A có BD phân giác, kẻ DE Chứng minh rằng: a) ABD EBD DE BC E �BC Gọi F giao điểm AB b) BD đường trung trực AE c) BD FC d) AE FC 2AC Bài 43: Cho góc xOy nhọn Kẻ tia phân giác OT góc xOy Trên tia Ox lấy điểm A, tia Oy lấy điểm B cho OA = OB Kẻ đường thẳng vng góc với Ox A cắt Ot C a) Chứng minh OAC OBC CB Oy b) Chứng minh OC đường trung trực đoạn thẳng AB Gv: Phạm Chí Trung 0906.489.009 BI Ox I �Ox , BI cắt OC H Kẻ HK Oy K �Oy Chứng minh điểm A, H, K thẳng c) Kẻ hàng d) Gỉa sử � 60 xOy OH = 3cm Tính khoảng cách từ điểm H tới canh Ox Oy � Bài 44: Cho ABC vng C có A 60 Tia phân giác góc A cắt BC E Hạ EK AB,BD AE a) Chứng minh ACE AKE AE trung trực đoạn thắng CK b) KA = KB c) EB > AC d) Ba đường AC, BD, KE đồng quy Bài 45: Cho tam giác ABC có AB < AC Tia phân giác góc BAC cắt cạnh BC D Trên cạnh AC lấy E cho AE = AB a) Chứng minh ABD AED c) Chứng minh rằng: BE // FC b) Tia ED cắt AB F chứng minh BDF EDC d) Chứng minh rằng: BD < DC o � Bài 46: Cho tam giác ABC cân A, có A 90 , hai đường cao BE CF cắt H Chứng minh: a) BE = CF b) Tam giác HEF cân c) EF // BC d) AH EF Bài 47: Cho tam giác ABC có AB = AC M N trung điểm cạnh AB cạnh AC Trên cạnh BC lấy điểm D E cho BD = DE = EC a) Chứng minh: ME = ND b) Gọi I giao điểm ME ND Chứng minh: Tam giác IDE cân c) Chứng minh AI BC o � Bài 48: Cho tam giác ABC có A 90 AC > AB Kẻ AH BC Trên tia HC lấy điểm D cho HD = HB Kẻ CE vng góc với AD kéo dài a) Chứng minh: AHB AHD � � b) Chứng minh: BAH ACB � c) Chứng minh: CB tia phân giác ACE d) Gọi giao điểm AH CE K Chứng minh: KD // AB e) Chứng minh: AC > CD Bài 49: Cho tam giác ABC cân A Trên tia đối tia BC lấy điểm D, tia đối tia CB lấy điểm E cho BD = CE Kẻ DH vng góc với AB, kẻ EK vng góc với AC a) Tam giác DAE tam giác gì? Chứng minh b) Chứng minh: DH = EK c) Chứng minh: ADH AEK d) Gọi O giao điểm DH EK, chứng minh DOE cân � e) Chứng minh AO tia phân giác DAE Gv: Phạm Chí Trung Bài 126: Cho ABC cân A Trên canh BC lấy điểm M, N cho NF AC E �AB,F �AC , EM cắt FN H Chứng minh 0906.489.009 BM CN BC Kẻ ME AB, a) ABM ACN � b) Gọi D trung điểm MN Chứng minh AD tia phân giác góc BAC c) EF // BC d) Chứng minh A, D, H thẳng hàng Bài 127: Cho ABC vuông A có AB = 3cm, AC = cm E trung điểm AC AD tia phân giác � góc A a) Tính BC b) Chứng minh ABD AED c) Đường thẳng ED cắt đường thẳng AB M Chứng minh AMC vuông cân d) Chứng minh DC = 2BD E �AC Trên BC lấy H cho BH = BA, giao AB Bài 128: Cho ABC vuông A, phân giác BE EH K a) So sánh AK HC b) Chứng minh BE KC c) Chứng minh AE EC d) ABC cần thêm điều kiện BKC Bài 129: Cho ABC cân A Hai đường cao BD CE cắt H Chứng minh � a) AH phân giác BAC b) ED // BC c) Gọi M trung điểm BC Chứng minh đường thẳng HM, BE, CD đồng quy điểm Bài 130: Cho ABC , M trung điểm BC Kẻ AH BC Lấy D cho M trung điểm AD Lấy K cho H trung điểm AK Chứng minh � � a) BAK BKA Gv: Phạm Chí Trung 0906.489.009 b) BK = CD c) KD AK Bài 131: Cho ABC vuông A, vẽ trung tuyến BM Trên tia đối tia MB lấy điểm E cho ME = MB a) Chứng minh ABM CEM EC = AB b) So sánh BC CE � � c) Chứng minh ABM CBM Bài 132: Cho ABC , phân giác góc B C cắt I Qua I kẻ đường thẳng song song với BC cắt AB AC M N a) Chứng minh BMI cân b) Chứng minh MN MB NC c) Đường thẳng qua C vng góc với AC cắt tia AI K Gọi E hình chiếu K tia AB So sánh KC KE Bài 133: Cho ABC , trung tuyến AM BN cắt G Trên tia đối tia MG lấy E cho ME = MG, tia đối tia NG lấy F cho NF = NG a) Chứng minh G trung điểm AE BF b) Chứng minh EC = GF EC // GF c) So sánh chu vi BGM chu vi BCF d) Chứng minh ABC cân tịa C CE = CF E �BD , AE cắt BC K Bài 134: Cho ABC vuông A, phân giác BD Kẻ AE BD a) ABK tam giác gì? b) Chứng minh AD < DC � c) Kẻ AH BC H Chứng minh AK tia phân giác HAC Bài 135: Cho ABC , trung tuyến BM, trọng tâm I Trên tia M lấy K cho I trung điểm BK Gọi E trung điểm KC a) Chứng minh M trung điểm IK b) Kẻ NI // KC N �BC Chứng minh IN = KE = EC Gv: Phạm Chí Trung 0906.489.009 c) Chứng minh A, I, N thẳng hàng CD AC d) Đường thẳng IE cắt AC D Chứng minh Gọi H hình chiếu C Bài 136: Cho ABC vng cân A, có đường phân giác BD đường thẳng BD Lấy điểm E BD cho H trung điểm DE Gọi F giao điểm CH AB Chứng minh rằng: D �AC a) CDE tam giác cân b) ABD ACF c) So sánh góc CBF CFB d) DF // CE Bài 137: Cho tam giác ABC vuông A , vẽ trung tuyến AM Trên tia đối tia MA lấy điểm D cho MD = MA a) Chứng minh : MAB MDC Suy góc ACD vng b) Gọi K trung điểm AC Chứng minh : KB = KD c) KD cắt BC I, KB cắt AD N Chứng minh : KNI cân DH BC H �BC Bài 138: Cho ABC vng A, đường phân giác góc B cắt AC D Vẽ a) Chứng minh: ABD HBD b) Trên tia đối AB lấy điểm K cho AK = HC Chứng minh ba điểm K, D, H thẳng hàng Bài 139: Cho tam giác ABC vng A, đường phân giác góc B cắt AC E Vẽ EH vng góc với BC (H ∈BC) Gọi K giao điểm BA HE Chứng minh rằng: a) ΔABE = ΔHBE b) BE đường trung trực đoạn thẳng AH c) EC = EK Bài 140: Cho tam giác ABC vuông A, có AB = 6cm; AC = 8cm, phân giác B D.Kẻ DE ⊥ BC ( E ∈BC) Gọi F giao điểm BA ED a) Tính độ dài cạnh BC? b) Chứng minh DF =DC c) Chứng minh D trực tâm ∆BFC Bài 141: Cho tam giác ABC vng A có AB = 6cm, AC = 8cm a) Tính độ dài đoạn BC b) Vẽ AH ⊥ BC H Trên HC lấy D cho HD = HB Chứng minh: AB = AD Gv: Phạm Chí Trung 0906.489.009 c) Trên tia đối tia HA lấy điểm E cho EH = AH Chứng minh: ED ⊥ AC d) Chứng minh BD < AE Bài 142: Cho ΔABC vuông A, kẻ phân giác BD góc B (D thuộc AC), kẻ AH ⊥ BD, (H thuộc BD), AH cắt BC E a) Chứng minh: ΔBHA = ΔBHE b) Chứng minh: ED ⊥ BC c) Chứng minh: AD < DC d) Kẻ AK ⊥ BC (K thuộc BC) Chứng minh: AE phân giác góc CAK Bài 143: Cho ∆ABC vuông A, vẽ trung tuyến AM (M BC) Từ M kẻ MH AC, tia đối tia MH lấy điểm K cho MK = MH a)Chứng minh ∆MHC = ∆MKB b)Chứng minh AB // MH c)Gọi G giao điểm BH AM, I trung điểm AB Chứng minh I, G, C thẳng hàng Bài 144: Cho tam giác ABC vuông A, phân giác góc B cắt AC I Trên cạnh BC lấy điểm E cho BE = BA C/m tam giác ABI = tam giác EBI suy góc BEI = 90o Hai tia BA EI cắt D C/m tam giác AID = tam giác EIC suy tam giác IDC cân C/m AE // DC Bài 145: Cho ∆ ABC vuông A Vẽ đường cao AH Trên cạnh BC lấy điểm D cho BD = BA a) C/m góc BAD = góc ADB b) C/m Ad phân giác góc HAC c) Vẽ DK vng góc AC ( K thuộc AC) C/m AK = AH d) C/m AB + AC < BC + 2AH Bài 146: Cho tam giác ABC vuông A,đường phân giác BD Kẻ DE BC (E BC).Trên tia đối tia AB lấy điểm F cho AF = CE Chứng minh: a/ ABD = EBD b/BD đường trung trực đoạn thẳng AE c/ AD < DC ˆ ˆ d/ ADF EDC E,D,F thẳng hàng ) ABC Bài 147: Cho cân A ( A 90 ) Kẻ BD AC (D �AC), CE AB (E �AB),BD CE cắt H a) Chứng minh: BD = CE b) Chứng minh: BHC cân c) Chứng minh: AH đường trung trực BC � � d) Trên tia BD lấy điểm K cho D trung điểm BK So sánh: ECB DKC Gv: Phạm Chí Trung Bài 148: Cho ABC có AB = cm; AC = cm; BC = cm 0906.489.009 a) Chứng tỏ tam giác ABC vuông B b) Vẽ phân giác AD ( D thuộc BC) Từ D, vẽ DE AC ( E AC) Chứng minh DB = DE c) ED cắt AB F Chứng minh BDF = EDC suy DF > DE d) Chứng minh AB + BC > DE + AC Bài 149: Cho ABC vng A có Trên cạnh BC lấy điểm D cho BA = BD Tia phân giác cắt AC I a/ Chứng minh BAD b/ Chứng minh IBC cân c/ Chứng minh D trung điểm Bc d/ ChoAB = 6cm Tính BC, AC � Bài 150: Cho ABC vng A ABC = 600 a) So sánh AB AC ? b) Trên cạnh BC lấy điểm D cho BD = AB Qua D dựng đường thẳng vuông góc với BC cắt tia đối tia AB E Chứng minh : ABC = DBE? � c) Gọi H giao điểm ED AC Chứng minh: tia BH tia phân giác ABC ? d) Qua B dựng đường vng góc với AB cắt đường thẳng ED K Chứng minh : HBK ? ) ABC Bài 151: Cho cân A ( A 90 ) Kẻ BD AC (D �AC), CE AB (E �AB), BD CE cắt H a) Chứng minh: ABD ACE b) Chứng minh: BHC cân c) Chứng minh: ED // BC d) AH cắt BC K, tia HK lấy điểm M cho K trung điểm HM Chứng minh: ACM vuông Bài 152: Cho ABC vuông C Trên cạnh AB lấy điểm D cho AD = AB Kẻ qua D đường thẳng vng góc với AB cắt BC E AE cắt CD I a) Chứng minh AE phân giác góc CAB b) Chứng minh AD trung trực CD c) So sánh CD BC d) M trung điểm BC, DM cắt BI G, CG cắt DB K Chứng minh K trung điểm DB Bài 153: Cho tam giác ABC có BC = 2AB Gọi M trung điểm BC, N trung điểm BM Trên tia đối tia NA lấy điểm E cho AN = EN Chứng minh: a) tam giác NAB = tam giác NEM b) Tam giác MAB tam giác cân c) M trọng tâm tam giác AEC d) AB > AN ( đ) ( đ) ( đ) Gv: Phạm Chí Trung Bài 154: Cho ABC vng A Biết AB = 3cm, AC = 4cm 0906.489.009 a) Tính BC b) Gọi M trung điểm BC Kẻ BH vng góc với AM H, CK vng góc với AM K Chứng minh BHM = CKM c) Kẻ HI vng góc với BC I So sánh HI MK d) So sánh BH + BK với BC Bài 155: Cho ABC cân A Kẻ AH BC H a) Chứng minh: ABH = ACH b) Vẽ trung tuyến BM Gọi G giao điểm AH BM Chứng G trọng tâm ABC c) Cho AB = 30cm, BH = 18cm Tính AH, AG d) Từ H kẻ HD song song với AC ( D thuộc AB ) Chứng minh ba điểm C, G, D thẳng hàng Bài 156: Cho ABC vuông A Đường phân giác BD Vẽ DH BC (H � BC) a/ ABD = HBD b/ Gọi K giao điểm BA HD Chứng minh : BD đường trung trực AH c/ Chứng minh : DK = DC d/ Cho AB = 6cm; AC = 8cm Tính HC ? Bài 157: Cho ABC có AB = cm , AC = 12 cm, BC = 15 cm a) Chứng minh: ABC vuông b) Vẽ trung tuyến AM, M kẻ MH AC tia đối tia MH lấy điểm K cho MK = MH Chứng minh: MHC = MKB BH cắt AM G Chứng minh: G trọng tâm tam giác ABC Bài 158: Cho tam giác ABC có AB = 3cm, AC =4cm, BC = 5cm a Tam giác ABC tam giác ? b Vẽ BD phân giác góc B Trên cạnh BC lấy điểm E cho AB = AE Chứng minh AD = DE c Chứng minh AE BD d Kéo dài BA cắt ED F Chứng minh AE//FC Gv: Phạm Chí Trung 0906.489.009 Bài 159: Cho tam giác ABC vng A Đường phân giác góc B cắt AC D Từ D kẻ DE vng góc với BC Đường thẳng ED cắt BA F a/ Chứng minh Từ suy ? b/ Chứng minh BD đường trung trực AE c/ So sánh AD CD d/ Chứng minh BD vng góc với CF Có nhận xét tam giác BCF ? (Hãy chứng minh) Bài 160: Cho tam giác ABC (AB < AC) có AM phân giác góc A (M BC) Trên AC lấy D cho AD = AB a Chứng minh: BM = MD b Gọi K giao điểm AB DM Chứng minh: DAK = BAC c Chứng minh: AKC cân d So sánh: BM CM ) Bài 161: Cho ABC cân A ( A 90 ) Kẻ BD AC (D �AC), CE AB (E �AB), BD CE cắt H a) Chứng minh: BD = CE b) Chứng minh: BHC cân c) Chứng minh: AH đường trung trực BC � � d) Trên tia BD lấy điểm K cho D trung điểm BK So sánh: ECB DKC Bài 162: Cho ABC có AB = cm; AC = cm; BC = cm a) Chứng tỏ tam giác ABC vuông B b) Vẽ phân giác AD ( D thuộc BC) Từ D, vẽ DE AC ( E AC) Chứng minh DB = DE c) ED cắt AB F Chứng minh BDF = EDC suy DF > DE d) Chứng minh AB + BC > DE + AC Bài 163: Cho ABC vng A có Trên cạnh BC lấy điểm D cho BA = BD Tia phân giác cắt AC I a/ Chứng minh BAD b/ Chứng minh IBC cân c/ Chứng minh D trung điểm Bc d/ ChoAB = 6cm Tính BC, AC Bài 164: Cho tam giác ABC vuông A Trên tia đối tia AB lấy điểm K cho BK = BC Vẽ KH vng góc với BC H cắt AC E a) Vẽ hình ghi GT – KL ? b) KH = AC c) BE tia phân giác góc ABC ? Gv: Phạm Chí Trung 0906.489.009 d) AE < EC ? � Bài 165: Cho ABC cân A ( A 90 ) Kẻ BD AC (D �AC), CE AB (E �AB), BD CE cắt H a) Chứng minh: BD = CE b) Chứng minh: BHC cân c) Chứng minh: AH đường trung trực BC � � d) Trên tia BD lấy điểm K cho D trung điểm BK So sánh: ECB DKC Bài 166: Cho ABC vuông A có C = 30 Vẽ đường phân giác góc B cắt AC M Từ M kẻ ME vng góc BC (E thuộc BC) a) Chứng minh: ABM = EBM b) Chứng minh: ABE tam giác c) Trên tia đối tia AB lấy điểm D cho AD = CE Chứng minh: D, M, E thẳng hàng Bài 167: Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm a) Tam giác ABC tam giác ? b) Vẽ BD phân giác góc B Trên cạnh BC lấy điểm E cho AB = BE Chứng minh AD = DE c) Chứng minh AE BD d) Kéo dài BA cắt ED F Chứng minh AE//FC Bài 168: Cho ABC cân A, kẻ AHBC Biết AB = 5cm, BC = 6cm a) Tính độ dài đoạn thẳng BH, AH? b) Gọi G trọng tâm tam giác ABC Chứng minh ba điểm A, G, H thẳng hàng? c) Chứng minh: ABG = ACG? Bài 169: Cho tam giác ABC vuông A, có AB < AC Trên cạnh BC lấy điểm D cho BD = BA Kẻ AH vng góc với BC, lấy K AC cho AH = AK a) Chứng minh BDA DAC phụ ; b) Chứng minh AD phân giác góc HAC c) Chứng minh DK AC Bài 170: Cho tam giác ABC, M trung điểm BC Trên tia đối tia MA lấy điểm E cho ME = MA a/ Chứng minh: AC = EB AC // BE b/ Gọi I điểm AC, K điểm EB cho AI = EK Gv: Phạm Chí Trung 0906.489.009 Chứng minh: I, M, K thẳng hàng c/ Từ E kẻ EH BC (H � BC) Biết góc HBE 500; góc MEB 250, tính góc HEM BME ? � Bài 171: Cho ABC cân A ( A 90 ); đường cao BD; CE (D AC; E AB) cắt H a) Chứng minh: ABD = ACE b) BHC tam giác gì, sao? c) So sánh đoạn HB HD? d) Trên tia đối tia EH lấy điểm N cho NH < HC; Trên tia đối tia DH lấy điểm M cho MH = NH Chứng minh đường thẳng BN; AH; CM đồng quy � � Bài 172: Cho tam giác ABC cân A có A = 1300 Trên cạnh BC lấy điểm D cho CAD = 500 Từ C kẻ tia Cx song song với AD , tia Cx cắt tia BA E a) Chứng minh AEC tam giác cân b) Trong AEC, cạnh cạnh lớn nhất, ? Bài 173: Cho ΔABC vng A có trung tuyến CK Trên tia đối tia KC lấy D cho K trung điểm CD a) Chứng minh : AB vng góc với DB b) Vẽ AM CD M, BN CD N Chứng minh : AM = BN AC BC CK c) Chứng minh : d) Vẽ đường cao KH ΔBKC Chứng minh đường thẳng CA, HK, BN đồng qui Bài 174: Cho ΔABC vng A có AB =8 cm; BC = 10 cm a) Tính độ dài cạnh AC so sánh góc ΔABC b) Trên tia đối tia AB lấy điểm D cho A trung điểm đoạn thẳng BD.Chứng minh ΔBCD cân c) Gọi H trung điểm cạnh BC, đường thẳng DH cắt cạnh AC M Tính MC d) Đường trung trực d đoạn thẳng AC cắt đường thẳng DC P Chứng minh ba điểm B, M, P thẳng hàng Bài 175: Cho tam giác ABC cân A, kẻ BD vng góc với AC; CE góc với AB (D thuộc AC ; E thuộc AB) Gọi I giao điểm BD CE Chứng minh : a) BD = CE b) AI tia phân giác góc BAC c) Gọi M trung điểm BC, chứng minh điểm A, I, M thẳng hàng Gv: Phạm Chí Trung 0906.489.009 Bài 176: Cho tam giác ABC cân A, kẻ BD vng góc với AC; CE góc với AB (D thuộc AC ; E thuộc AB) Gọi I giao điểm BD CE Chứng minh : a) BD = CE b) AI tia phân giác góc BAC c) Gọi M trung điểm BC, chứng minh điểm A, I, M thẳng hàng Bài 177: Cho ABC có cạnh AB = AC, M trung điểm BC a) Chứng minh ABM = ACM b) Trên tia đối tia MA lấy điểm D cho MD = MA Chứng minh AC = BD c) Chứng minh AB // CD d) Trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ax // BC lấy điểm I �Ax cho AI = BC Chứng minh điểm D, C, I thẳng hàng Bài 178: Cho tam giác ABC cân A (góc A nhọn, AB > BC) Gọi H trung điểm BC a) Chứng minh D AHB = D AHC AH vng góc với BC H b) Gọi M trung điểm AB Qua A kẻ đường thẳng song song với BC, cắt tia HM D Giả sử AB = 20cm , AD = 12cm Chứng minh AD = BH Tính độ dài đoạn AH c) Tia phân giác góc BAD cắt tia CB N Kẻ NK vng góc với AD K, NQ vng góc với AB Q � = 450 + BAC � ANQ Chứng minh AQ = AK d) CD cắt AB S Chứng minh BC < 3.AS Bài 179: Cho ABC cân A, kẻ AM BC M Kẻ ME AB E, MF AC F a) Chứng minh: AMB AMC EB = FC b) Cho BC = 6cm AB = 5cm Tính MA c) Trên tia đối tia EM lấy điểm D tia đối tia FM lấy điểm G, cho ED = FG Tia DB cắt đường thẳng AM K Chứng minh: G, C, K thẳng hàng Bài 180: Cho ABC có AB 3cm, AC 4cm, BC 5cm , BD đường phân giác góc B (D �AC) Từ D vẽ DE BC (E �BC) a) Chứng minh ABC vuông A b) So sánh góc ABC c) Chứng minh DA DE � � d) Tia ED cắt tia BA I Chứng minh DIA DCE Gv: Phạm Chí Trung 0906.489.009 Bài 181: Cho tam giác ABC vuông A với AB < AC Vẽ tia Bx cho tia BC phân giác góc ABx, vẽ CM vng góc với Bx M Gọi H giao điểm AM BC a) So sánh góc ABC góc ACB Chứng minh ABC MBC � � b) Chứng minh BC vng góc AM CAM CMA c) Chứng minh HM < HC Bài 182: Cho tam giác ABC có góc nhọn (AB < AC) Trên cạnh AC lấy điểm M cho AB = AM Gọi AD � tia phân giác BAC (D thuộc BC) a/ Chứng minh: ABD AMD b/ Từ D kẻ DI vng góc với AB, DK vng góc với AC (I thuộc AB, K thuộc AC) Chứng minh: BI = KM c/ Trên tia đối tia AB lấy điểm P cho A trung điểm PI Chứng minh: AD//PK Bài 183: Cho tam giác ABC cân A có đường cao AH a) Chứng minh tam giác ABH tam giác ACH b) Vẽ hai đường trung tuyến BM CN cắt G Chứng minh điểm A, G, H thẳng hàng c) Trên tia đối tia HG, lấy điểm E cho HG = HE Chứng minh G trung điểm AE Bài 184: Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm a) Chứng minh tam giác ABC tam giác vuông b) Gọi M trung điểm cạnh AC Trên tia đối tia MB, lấy điểm D cho MB = MD Chứng minh ABM = CDM, suy AC CD c) Gọi N, K trung điểm CD BC, BN cắt AC H Chứng minh K, H, D thẳng hàng Bài 185: Cho tam giác ABC cân A có AD đường trung tuyến a) Chứng minh ABD = ACD AD BC (1điểm) b) Cho AB = 10 cm, BC = 16 cm Tính độ dài AD so sánh góc tam giác ABD (1điểm) c) Vẽ đường trung tuyến CF tam giác ABC cắt AD M Tính độ dài AM (1điểm) d) Vẽ DH vng góc AC H, cạnh AC cạnh DC lấy hai điểm E, K cho AE = AD DK = DH Chứng minh: EK BC (0,5điểm) Bài 186: Cho tam giác ABC cân A (AB = AC, Â nhọn) Vẽ AH BC (H BC) a) Chứng minh AHB = AHC b) Gọi M trung điểm CH Từ M vẽ đường thẳng vng góc với BC cắt AC D Chứng minh DMC = DMH HD // AB c) BD cắt AH G Chứng minh G trọng tâm ABC Bài 187: Cho góc xAy có số đo 600 Trên tia phân giác Az góc xAy lấy điểm M (M khác A), vẽ MH vng góc với Ax H MK vng góc với Ay K Gv: Phạm Chí Trung 0906.489.009 a) Chứng minh tam giác AHK b) Tia HM cắt tia Ay P tia KM cắt tia Ax Q Chứng minh hai tam giác AMQ AMP c) Chứng minh HK = HQ d) Chứng minh 2. MH + KP > PQ Bài 188: Cho ABC vuông A ; có BD tia phân giác góc B (D thuộc AC) Từ D, vẽ DEBC ( E thuộc BC) a) Chứng minh: ∆ADB = ∆EDB b) DE kéo dài cắt tia BA K Chứng minh: AK = EC; AD < DC c) Kéo dài BD cắt CK F; gọi G điểm đoạn DF cho DG = 2GF M trung điểm CD Chứng minh: K; G; M thẳng hàng Bài 189: Cho ABC vuông A, đường phân giác BD ( D AC) Kẻ DK BC (K�BC) Nối AK cắt BD E a) Chứng minh : b) Chứng minh : AK BD E c) Gọi I giao điểm đường thẳng BA KD Chứng minh : AK//IC Bài 190: Cho ∆ABC vuông A có AB = cm, AC = cm a) Tính độ dài cạnh BC so sánh số đo góc ∆ABC b) Gọi I trung điểm AC, từ I vẽ đường thẳng vng góc với AC cắt BC K Chứng minh: AKC cân c) AK cắt BI G Chứng minh: BG = 2GI Bài 191: Cho ABC vuông A Phân giác góc ABC cắt AC E Trên cạnh BC lấy điểm D cho DB = AB BE cắt AD I a) Chứng minh: ABE = DBE từ suy ED BC b) Chứng minh: BE đường trung trực đoạn thẳng AD c) So sánh AC CD d) M trung điểm DC, AM cắt CI G, DG cắt AC K Chứng minh K trung điểm AC Bài 192: Cho tam giác ABC có độ dài cạnh cm Gọi M trung điểm cạnh BC, G trọng tâm tam giác ABC Vẽ đường thẳng d đường trung trực đoạn thẳng BC a) Chứng minh điểm A nằm d b) Tính độ dài đoạn thẳng AM khoảng cách từ điểm G đến ba cạnh tam giác ABC Bài 193: Cho tam giác ABC có AB < AC Gọi M trung điểm BC, tia AM lấy điểm D cho M trung điểm AD a) Chứng minh ABM DCM � � b) Chứng minh AB // DC so sánh hai góc MAB MAC c) Trên đoạn thẳng AM lấy điểm G cho AG 2GM Tia BG cắt AC N, tia CG cắt AB P Gv: Phạm Chí Trung Chứng minh AM BN CP 0906.489.009 AB AC BC o � � D �BC Trên tia AC lấy điểm E cho AB = Bài 194: Cho ABC có B 90 , AD tia phân giác A H �AC AE, kẻ BH AC a) Chứng minh ABD AED; DE AE b) Chứng minh AD đường trung trực đoạn thẳng BE c) So sánh EH EC � M �BC Trên cạnh AC lấy điểm D cho Bài 195: Cho ABC có AB < AC AM tia phân giác A AD = AB a) Chứng minh BM = MD b) Gọi K giao điểm AB DM Chứng minh DAK BAC c) Chứng minh AKC cân d) So sánh KM CM Bài 195: Cho ABC cân A Lấy điểm M tia đối tia BC điểm N tia đối tia CB cho BM = CN � � a) Chứng minh ABM ACN b) Chứng minh AMN cân c) So sánh độ dài đoạn thẳng AM, AC d) Trên tia đối tia MA lấy điểm I cho MI = AM Chứng minh MB BC CN tia AN qua trung điểm đoạn thẳng IN Bài 196: Lấy điểm A thuộc tia phân giác Ot góc nhọn mOn Kẻ AB,AC vng góc với Om, On (B thuộc Om, C thuộc On) Chứng minh: a BOA COA b OA đường trung trực đoạn thẳng BC c Kẻ BD vuông góc với OC ( D thuộc OC) Gọi M giao điểm BD với Ot Chứng minh CM vng góc với OB Bài 197: Cho tam giác MNP cân M Trên cạnh MN, MP lấy điểm D, E cho MD=ME a Chứng minh NE=DP b Gọi I giao điểm NE DP Chứng minh IEP IDN c Chứng minh MI trung trực đoạn DE Gv: Phạm Chí Trung 0906.489.009 d Chứng minh DE//NP Bài 198: Cho tam giác ABC vuông A (AB>AC), đường phân giác CD (D thuộc AB) Trên tia CB lấy điểm E cho CE=CA Chứng minh rằng: a) DAC DEC b) So sánh DE DB c) CD đường trung trực đoạn thẳng AE � � d) Qua E vẽ đoạn thẳng EM vng góc với BD cho BM=BE Chứng minh DMA DAM Bài 199: Cho tam giác DEF vuông D (DE>DF), đường phân giác FI (I thuộc DE) Trên tia FE lấy điểm P cho FP=FD Chứng minh rằng: a) IDF IPF b) So sánh EP EI c) FI đường trung trực đoạn thẳng DP Qua P vẽ đoạn thẳng PQ vng góc với EI cho EQ=EP Chứng minh � IDQ � IQD Bài 200: Cho tam giác MNP cân M, có góc M 1200 Kẻ MI tia phân giác góc NMP, IH MN, IK MP ( I thuộc NP, H thuộc MN, K thuộc MP) Chứng minh MIH MIK Chứng minh rằng: MI đường trung trực đoạn thẳng HK Tam giác IHK tam giác gì? Vì sao? Gọi E giao điểm hai đường thẳng PM IH, F giao điểm hai đường thẳng NM IK Chứng tỏ ba đường thẳng NE, PF, MI đồng quy Bài 201: Cho tam giác ABC cân A( A< 900); đường cao BD;CE (D thuộc AC; E thuộc AB) cắt H a) b) c) d) a Chứng minh ABD ACE b Chứng minh BHC tam giác cân BD