1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual for optical fiber communications 4th edition by gerd keiser

15 75 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 381,83 KB

Nội dung

Download Full Solution Manual for Optical Fiber Communications 4th Edition by Gerd Keiser https://getbooksolutions.com/download/solution-manual-optical-fibercommunications-4th-edition-by-keiser Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th ed., 2011 Problem Solutions for Chapter E  100cos 210 t  30 e x  20cos 210 t  50 e y 2.1 2.2  40cos 2108 t  210 e z The general form is: y = (amplitude) cos(t - kz) = A cos [2(t - z/)] Therefore (a) amplitude = m (b) wavelength: 1/ = 0.8 m-1 so that  = 1.25 m (c)  = 2(2) = 4 (d) At time t = and position z = m we have y = cos [2(-0.8 m-1)(4 m)] = cos [2(-3.2)] = 2.472 2.3 x1 = a1 cos (t - 1) and x2 = a2 cos (t - 2) Adding x1 and x2 yields x1 + x2 = a1 [cos t cos 1 + sin t sin 1] + a2 [cos t cos 2 + sin t sin 2] = [a1 cos 1 + a2 cos 2] cos t + [a1 sin 1 + a2 sin 2] sin t Since the a's and the 's are constants, we can set a1 cos 1 + a2 cos 2 = A cos  (1) a1 sin 1 + a2 sin 2 = A sin  (2) provided that constant values of A and exist which satisfy these equations To verify this, first we square both sides and add: A2 (sin2  + cos2 ) = a 21 sin2 1  cos2 1  + a 22 sin2   cos2   + 2a1a2 (sin 1 sin 2 + cos 1 cos 2) or A2 = a 12  a 22 + 2a1a2 cos (1 - 2) Dividing (2) by (1) gives tan  = a sin1  a sin2 a cos 1  a cos 2 Thus we can write x = x1 + x2 = A cos  cos t + A sin  sin t = A cos(t - ) 2.4 First expand Eq (2.3) as Ey E0 y = cos (t - kz) cos  - sin (t - kz) sin  (2.4-1) Subtract from this the expression Ex cos  = cos (t - kz) cos  E0 x to yield Ey E0 y - Ex cos  = - sin (t - kz) sin  E 0x (2.4-2) Using the relation cos2  + sin2  = 1, we use Eq (2.2) to write   E 2  sin2 (t - kz) = [1 - cos2 (t - kz)] = 1   x    E 0x   (2.4-3) Squaring both sides of Eq (2.4-2) and substituting it into Eq (2.4-3) yields 2 E y  E  x cos  = E   y E 0x    E 2   x  1  E   sin  0x   Expanding the left-hand side and rearranging terms yields 2  E    E x   E y    +   -  E x   y  cos  = sin2  E 0x E 0y  E 0x  E 0y  2.5 Plot of Eq (2.7) 2.6 Linearly polarized wave 2.7 Air: n = 1.0 33  33  90  Glass (a) Apply Snell's law n1 cos 1 = n2 cos 2 where n1 = 1, 1 = 33, and 2 = 90 - 33 = 57  n2 = cos 33 = 1.540 cos 57 (b) The critical angle is found from nglass sin glass = nair sin air with air = 90 and nair = 1.0  critical = arcsin n glass = arcsin = 40.5 1.540 2.8 Air r Water  12 cm Find c from Snell's law n1 sin 1 = n2 sin c = When n2 = 1.33, then c = 48.75 r Find r from tan c = , which yields r = 13.7 cm 12 cm 2.9 45  Using Snell's law nglass sin c = nalcohol sin 90 where c = 45 we have 1.45 nglass = = 2.05 sin 45 n pure 1.450 = 83.3 1.460 2.10 critical = arcsin 2.11 Need to show that n1 cos 2  n cos 1  Use Snell’s Law and the relationship sin  tan   cos  n doped = arcsin 2.12 (a) Use either NA = n12  n22  = 0.242 1/ or NA  n1 2 = n1 2(n1  n ) = 0.243 n1 (b) A = arcsin (NA/n) = arcsin 2.13 0.242  = 14  1.0  n   1.00  (a) From Eq (2.21) the critical angle is  c  sin 1    sin 1    41  1.50   n1    (c) The number of angles (modes) gets larger as the wavelength decreases 2.14 NA = n12  n22  = n12  n12(1 )2  1/ 1/ = n1 2  2  /2 Since 

Ngày đăng: 01/03/2019, 11:36

TỪ KHÓA LIÊN QUAN

w