1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Link download solution manual optical fiber communications 4th edition by gerd keiser

15 76 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 585,81 KB

Nội dung

Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th ed., 2011 Problem Solutions for Chapter E  00co s 2 1 08 t  0 ex  0co s 21 08t  0 ey 2.1 2.2  0co s 21 08 t  10 ez The general form is: y = (amplitude) cos(t - kz) = A cos [2(t - z/)] Therefore (a) amplitude = m (b) wavelength: 1/ = 0.8 m (c)  = 2(2) = 4 -1 so that  = 1.25 m (d) At time t = and position z = m we have -1 y = cos [2(-0.8 m )(4 m)] = cos [2(-3.2)] = 2.472 2.3 x1 = a1 cos (t - 1) and x2 = a2 cos (t - 2) Adding x1 and x2 yields x1 + x2 = a1 [cos t cos 1 + sin t sin 1] + a2 [cos t cos 2 + sin t sin 2] = [a1 cos 1 + a2 cos 2] cos t + [a1 sin 1 + a2 sin 2] sin t Since the a's and the 's are constants, we can set a1 cos 1 + a2 cos 2 = A cos  (1) a1 sin 1 + a2 sin 2 = A sin  (2) provided that constant values of A and exist which satisfy these equations To verify this, first we square both sides and add: 2 A (sin  + cos ) = a sin 1  cos 1  2 2 2 + a2 sin 2  cos 2  + 2a1a2 (sin 1 sin 2 or A = a  a + 2a a cos ( -  ) 12 + cos 1 cos 2) Dividing (2) by (1) gives tan  = sin   a sin  2 a cos   a cos  a 1 2 Thus we can write x = x1 + x2 = A cos  cos t + A sin  sin t = A cos(t - ) 2.4 First expand Eq (2.3) as Ey E0 y = cos (t - kz) cos  - sin (t - kz) sin  (2.4-1) Subtract from this the expression Ex cos  = cos (t - kz) cos  E0 x to yield Ey E 0y - Ex E cos  = - sin (t - kz) sin  (2.4-2) 0x 2 Using the relation cos  + sin  = 1, we use Eq (2.2) to write  E   x  2  sin (t - kz) = [1 - cos (t - kz)] =  E    0x (2.4-3) Squaring both sides of Eq (2.4-2) and substituting it into Eq (2.4-3) yields E y  E x  E 0x  y  E 2 cos  =  E     sin    x   E  0x Expanding the left-hand side and rearranging terms yields E   E    x E   cos  = sin2  -2  E 0x E 0y    y + E 0x  E 0y  E    x 2.5 Plot of Eq (2.7) 2.6 Linearly polarized wave y 2.7 Air: n = 1.0 33  33  90  Glass (a) Apply Snell's law n1 cos 1 = n2 cos 2 where n1 = 1, 1 = 33, and 2 = 90 - 33 = 57  n2 = cos 33 = 1.540 cos 57 (b) The critical angle is found from n glass sin glass = n sin air air with air = 90 and nair = 1.0 critical = arcsin n = arcsin 1.540 g lass = 40.5 2.8 Air r Water  12 cm Find c from Snell's law n1 sin 1 = n2 sin c = When n2 = 1.33, then c = 48.75 r Find r from tan c = , which yields r = 13.7 cm 12 cm 2.9 45  Using Snell's law nglass sin c = nalcohol sin 90 where c = 45 we have n = 1.45 glass sin 45 = 2.05 2.10 critical= arcsin n pure n = arcsin 1.450 = 83.3 1.460 doped 2.11 Need to show that n1 cos 2  n cos 1  Use Snell’s Law and the relationship tan  sin  cos  1/ 2  = 0.242 2.12 (a) Use either NA = n1  n2 or 2(n1  n2 ) NA  n1 2= n1 = 0.243 n (b) A = arcsin (NA/n) = arcsin 0.242 = 14  1.0  c 2.13 (a) From Eq (2.21) the critical angle is    sin 1  n       n  1  sin  1.00   41 1.50  (c) The number of angles (modes) gets larger as the wavelength decreases. 2 1/ 2.14 NA = n1  n2  = n )2 1/ 2  n1 (1 1/2 = n1 2  Since 

Ngày đăng: 01/03/2019, 09:27