Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
424,04 KB
Nội dung
Linear Algebra and Its Applications 5th edition by Lay McDonald Test Bank Link full download solution manual: https://findtestbanks.com/download/linear-algebra-and-its-applications-5th-editionby-lay-mcdonald-solution-manual/ Link full download test bank: https://findtestbanks.com/download/linear-algebra-and-its-applications-5th-edition-by-laymcdonald-test-bank/ MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Perform the matrix operation 1) Let A = -3 Find 5A 02 A) C) D) B) -15 -15 -15 26 10 02 02 57 Answer: A 2) Let B = -1 -3 Find -4B A) -4 -28 12 B) -4 28 -12 C) -3 D) -3 -1 -5 Answer: A 3) Let C = -2 10 A) -2 10 Find (1/2) C C) B) -1 10 D) -1 12 -4 20 Answer: C 4) Let A = 3 24 A) 12 7 10 and B = 04 Find 4A + B -1 C) B) D) 12 16 10 12 16 22 12 28 40 Answer: B 5) Let C = -3 A) -3 -6 and D = -1 -2 Find C - 2D B) C) -1 -2 D) -9 -6 Answer: C 6) Let A = -1 A) and B = Find 3A + 4B B) 2 C) -3 Answer: A 7) Let A = A) -4 -2 -5 and B = D) -1 -8 -6 -6 -7 -4 Find A + B B) C ) D ) -7 4 10 -4 11 -12 -8 -11 -4 11 -12 -5 -4 -1 Answer: B 11 -5 -8 -11 -4 8) Let A = -2 and B = 10 Find A - B -7 -2 -7 A) B) -4 -7 -8 -14 C) D) -7 -14 -7 -8 Answer: A 9) Let A = -3 -5 A) 00 00 and B = 0 Find A + B 00 B) -3 -5 C) D) Undefined -2 -3 Answer: B Find the matrix product AB, if it is defined -1 10) A = , B = -2 22 -1 A) B) -1 -6 C) D) -1 -6 20 -2 -6 -1 Answer: C 11) A = -3 , B = -2 -1 A) B) 06 -4 C) D) -3 -5 -11 -3 -11 -8 -6 -18 -8 -6 C) -8 -18 -6 D) -6 30 -8 C) D) AB is undefined Answer: C 12) A = -2 , B = -2 A) 12 B) Answer: C 13) A = -1 16 , B = -2 -3 A) B) -7 -20 18 -7 -20 18 -6 18 -18 12 Answer: B 14) A = -2 , B = -1 -2 A) 12 -8 -6 12 -4 B) C) AB is undefined D) 12 -6 -8 12 -4 12 0 Answer: C 15) A = -2 , B = -1 -3 A) AB is undefined B) C) -2 -4 11 D) -6 -8 -9 -4 -2 11 Answer: B 16) A = -1 ,B= 30 -1 05 A) AB is undefined B) C) -2 25 D) -3 0 25 -2 25 Answer: D 17) A = 02 , B = -2 -2 A) B) AB is undefined -2 -4 C) D) 0 -4 4 -4 -2 Answer: A The sizes of two matrices A and B are given Find the sizes of the product AB and the product BA, if the products are defined 18) A is × 4, B is × A) AB is × 4, BA is × B) AB is × 4, BA is × C) AB is × 8, BA is × D) AB is × 1, BA is × Answer: B 19) A is × 1, B is × A) AB is × 1, BA is undefined C) AB is × 2, BA is × B) AB is undefined, BA is 1× D) AB is × 2, BA is × Answer: A 20) A is × 4, B is × A) AB is × 1, BA is × C) AB is × 1, BA is undefined B) AB is × 4, BA is × D) AB is undefined, BA is × Answer: A 21) A is × 4, B is × A) AB is undefined, BA is undefined C) AB is × 2, BA is × B) AB is × 4, BA is × D) AB is × 2, BA is × Answer: A Find the transpose of the matrix 84 22) -4 -7 A) -4 -7 B) C) D) -7 -4 4 -4 -7 -4 -7 Answer: A 23) 7 -7 -7 A) 47 -7 -7 B) C) -7 -7 D) -7 -7 Answer: B Decide whether or not the matrices are inverses of each other -3 24) and -3 32 A) No B) Yes Answer: B 25) 10 and -1 -1 10 A) No B) Yes Answer: A 1 26) -2 4 -4 and 1 A) Yes B) No Answer: B 27) -5 -7 1 -2 and 2 A) No B) Yes Answer: B 7 -7 -7 28) 1 3 -5 and -3 5 A) No B) Yes Answer: B 29) 0.2 and -0.2 0.2 -0.45 44 A) Yes 94 B) No Answer: B 30) -2 -2 0.5 0.5 and - - 4 A) No B) Yes Answer: A 31) -5 -1 and -1 6 A) Yes B) No Answer: B -1 32) -1 -2 -1 A) No -1 and -3 -2 -1 1 B) Yes Answer: A Find the inverse of the matrix, if it exists 33) A = - -4 -4 B) A) 1 1 6 1 - - 8 C) D) 1 - 8 - - 1 - - 1 8 Answer: D 34) A = -5 A) B) - 11 10 C) 1 10 D) 1 10 Answer: D 1 10 6 35) A = -4 -6 A) B) A is not invertible - C) D) 15 - 15 - 15 Answer: A 36) A = -5 -5 2 A) B) A is not invertible 21 - C) D) 21 21 21 21 21 21 21 21 21 21 21 Answer: B 37) A = -6 A) B) 01 C) 1- - 3 D) - - 01 Answer: C 38) A = 30 A) B) C) 21 3 3 D) 3 0 - 3 - 3 Answer: A 39) 10 -1 11 A) -1 1 -1 0 B) C) D) 0 1 -2 -1 111 011 001 Answer: C -1 0 -1 -1 -1 -1 -1 Solve the system by using the inverse of the coefficient matrix 40) 6x1 + 5x2 = 13 5x1 + 3x2 = A) (-2, 5) B) No solution C) (-2, -5) D) (5, -2) B) (-3, 6) C) No solution D) (-3, -6) C) No solution D) (2, 8) B) (2, -1) C) (-2, 1) D) (1, -2) B) (-2, -3) C) (3, 2) D) (2, 3) B) (1, 4) C) (4, 1) D) (-1, -4) B) (2, 5) C) (-5, -2) D) (5, 2) B) (-6, -2) C) (-2, -6) D) (6, 2) Answer: A 41) 6x1 + 3x2 = 2x1 = -6 A) (6, -3) Answer: B 42) -3x1 - 2x2 = 6x1 + 4x2 = A) (-2, -2) B) - + 3 x , x2 Answer: C 43) 2x1 + 6x2 = 2x1 - x2 = -5 A) (-1, 2) Answer: C 44) 2x1 - 6x2 = -6 3x1 + 2x2 = 13 A) (-3, -2) Answer: C 45) 10x1 - 4x2 = -6 6x1 - x2 = A) (-4, -1) Answer: B 46) 2x1 - 4x2 = -2 3x1 + 4x2 = -23 A) (-2, 5) Answer: C 47) -5x1 + 3x2 = -2x1 + 4x2 = 20 A) (2, 6) Answer: A Find the inverse of the matrix A, if it exists -1 48) A = 10 -1 5 10 -1 A) A = -1 -1 B) A-1 does not exist D) A-1 = 1 49) A = 1 2 B) A-1 = -1 -1 -1 -2 1 D) A-1 = C) A-1 does not exist 1 1 1 Answer: B 50) A = 3 1 A) A-1 = 3 B) A-1 = -1 -3 -2 C) A-1 = -1 -3 -3 -2 -7 -8 -3 10 -3 -4 -1 1 D) A-1 does not exist Answer: B 5 -1 C) A = -2 0 Answer: B -1 -1 -1 A) A-1 = -2 -1 -1 -2 -2 -3 -2 0 51) A = -1 -8 A) A-1 = -1 -2 -3 -2 -5 -3 1 B) A-1 = 3 -40 16 D) A-1 = -3 13 -5 C) A-1 does not exist -1 -2 Answer: D -4 52) A = 11 -7 -3 11 A) A-1 = -4 -7 -3 2 11 -1 C) A = 11 B) A-1 does not exist -2 11 11 1 D) A-1 = 11 - - 3 1 3 Answer: B 3 53) A = -1 A) A-1 does not exist - -1 - C) A-1 = - B) A-1 = -1 4 7 0 D) A-1 = Answer: D 10 0 1 7 -1 7 3 0 - Determine whether the matrix is invertible 54) 14 A) No B) Yes Answer: B 55) -9 -4 -3 A) No B) Yes Answer: A Identify the indicated submatrix -4 -5 56) A = -1 Find A12 -7 A) B) -5 D) -7 C) Answer: B -2 -1 57) A = Find A21 -6 36 A) -1 -6 B) -2 C) Answer: D Find the matrix product AB for the partitioned matrices -2 58) A = -1 -3 , B = 2 -1 A) B) -4 -1 32 23 -17 -3 14 -1 21 11 46 52 -8 32 20 -5 -6 14 -7 18 46 31 C) D) -4 -1 32 23 -17 -3 14 -1 21 11 46 52 -4 -1 -12 -3 -9 28 -7 21 Answer: D 11 D) 59) A = I , B = W X I F Y Z A) B) C) X W + XF Z Y + ZF Y Z W + YF X + ZF D) Z FY FZ Y Z W + FY X + FZ Answer: D Solve the equation Ax = b by using the LU factorization given for A -1 60) A = -6 -5 , b = -3 -1 2 -1 004 100 A = -2 341 22 A) x = -7 15 25 B) x = -58 51 49 C) x = -38 32 10 D) x = -2 -13 27 -18 B) x = 89 -13 -2 C) x = -3 41 -6 D) x = -3 -5 Answer: D -1 -3 -1 -4 ,b= 61) A = 19 -9 00 -1 00 A= 10 -3 -2 1 -1 0 0 3 -1 27 A) x = 89 -3 Answer: D Find an LU factorization of the matrix A -1 62) A = -24 A) A = -6 C) A = -6 -1 -3 B) A = D) A = 61 Answer: A 12 -6 -1 -4 -1 -3 63) A = -3 24 0 A) A = 4 -3 -5 0 -1 0 B) A = 4 -3 0 24 0 C) A = 2 -3 3 -3 0 1 0 D) A = 2 -3 -5 0 -1 Answer: D Determine the production vector x that will satisfy demand in an economy with the given consumption matrix C and final demand vector d Round production levels to the nearest whole number 64) C = , d = 52 74 A) x = 205 236 B) x = 24 C) x = 43 B) x = 482 895 829 105 C) x = 218 207 D) x = 43 50 Answer: A 1 213 65) C = 3 , d = 323 298 A) x = 108 105 91 D) x = 728 978 -302 Answer: B Solve the problem 66) Compute the matrix of the transformation that performs the shear transformation x → Ax for A = 0.20 01 then scales all x-coordinates by a factor of 0.61 A) B) C) D) 1.61 0.20 0.20 0.61 0.20 0.61 0.122 0.61 1 and Answer: D 67) Compute the matrix of the transformation that performs the shear transformation x → Ax for A = 0.25 01 then scales all y-coordinates by a factor of 0.68 A) B) C) D) 0.17 0.25 0.68 0.17 0.25 0.68 1.68 0.68 Answer: D 13 and Find the × matrix that produces the described transformation, using homogeneous coordinates 68) (x, y) → (x + 7, y + 4) A) B) C) D) 104 107 107 700 017 014 014 040 001 000 001 001 Answer: C 69) Reflect through the x-axis A) 0 -1 0 B) C) -1 0 10 01 D) -1 0 -1 0 01 10 01 00 Answer: A Find the × matrix that produces the described composite 2D transformation, using homogeneous coordinates 70) Rotate points through 45° and then scale the x-coordinate by 0.6 and the y-coordinate by 0.8 A) B) 0.3 0.3 0.3 -0.4 -0.4 0.4 0.3 0.4 0 0 C) D) -0.6 0.3 -0.3 0.8 0 0.4 0.4 0 0 Answer: D 71) Translate by (8, 6), and then reflect through the line y = x A) B) 018 016 106 108 001 001 C) D) 061 800 001 -1 -8 -1 -6 001 Answer: B Find the × matrix that produces the described transformation, using homogeneous coordinates 72) Translation by the vector (4, -6, -3) A) B) C) D) 4000 1004 0004 -6 0 -6 0 -6 0 -3 0 -3 0 -3 0001 0001 0001 Answer: B 14 0 -4 0106 0013 0001 73) Rotation about the y-axis through an angle of 60° A) 0.5 - 3/2 0 0 3/2 0.5 B) 0 C) 0 0.5 - 3/2 0 3/2 0.5 0 0 3/2 -0.5 0.5 3/2 0 0 D) 0.5 - 3/2 0 3/2 0.5 0 0 0 0 1 0 Answer: A Determine whether b is in the column space of A -3 74) A = -6 , b = -2 -3 -2 -3 A) No B) Yes Answer: B -1 -10 -3 -3 A) Yes 75) A = ,b= -4 B) No Answer: B Find a basis for the null space of the matrix -7 -4 76) A = -2 0 0 A) B) C) -7 -4 , -2 0 -5 , 0 D) 0 , 0 0 , -7 -4 -2 Answer: A -4 -4 77) A = 2 0 1 0 0 A) B) 4 -2 -2 , 0 -1 C) 0 -4 , 0 -4 D) 0 , , 0 0 Answer: A 15 -4 -4 2 , 0 -1 Find a basis for the column space of the matrix -2 -3 78) B = -4 13 -2 -3 -15 A) B) -2 , -4 -3 C) , 13 -3 -15 D) 29 , 0 0 , 0 Answer: B -5 -3 79) B = 4 0 1 0 0 A) B) -5 , , 0 0 0 C) 0 , 0 0 D) -4 -4 , 0 -1 1 0 , , 0 0 Answer: D The vector x is in a subspace H with a basis β = {b1, b2} Find the β-coordinate vector of x 80) b1 = , b2 = -5 , x = 22 -2 -16 A) B) C) -2 -4 -4 D) -4 Answer: A 6 81) b1 = -2 , b2 = , x = -3 -18 A) B) -3 C) -3 D) -2 Answer: A 16 -3 Determine the rank of the matrix -2 -3 82) -4 -2 -3 -6 A) B) C) D) B) C) D) Answer: D -4 83) -3 000 000 0 A) 4 Answer: A 17