Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 137 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
137
Dung lượng
2,79 MB
File đính kèm
luan van full.zip
(4 MB)
Nội dung
VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ NGUYỄN THU ANH Tên đề tài : Nghiên cứu tính giải nghĩa hệ mờ theo ngữ nghĩa giới thực LUẬN ÁN TIẾN SĨ TỐN HỌC Chun ngành: Cơ sở tốn học cho tin học Mã số: 62.46.01.10 Người hướng dẫn khoa học: TS Trần Thái Sơn Hà Nội – 2019 LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu riêng tơi Các kết viết chung với tác giả khác đồng ý đồng tác giả trước đưa vào luận án Các kết luận án trung thực chưa công bố cơng trình khác Tác giả Nguyễn Thu Anh LỜI CẢM ƠN Luận án hoàn thành hướng dẫn tận tình nghiêm khắc TS.Trần Thái Sơn Lời đầu tiên, tác giả xin bày tỏ lòng kính trọng biết ơn sâu sắc tới Thầy Xin chân thành gửi lời cảm ơn tới PGS TSKH Nguyễn Cát Hồ đóng góp quý báu trình nghiên cứu thời gian hồn thành luận án Tác giả xin chân thành gửi lời cảm ơn đến Ban lãnh đạo Viện Công nghệ thông tin, Bộ phận đào tạo, Phòng Các hệ chuyên gia tính tốn mềm tạo điều kiện thuận lợi q trình học tập, nghiên cứu hồn thành luận án Cảm ơn anh chị phòng Các hệ chuyên gia tính tốn mềm - Viện Cơng nghệ thơng tin, nhóm nghiên cứu đại số gia tử động viên trao đổi kinh nghiệm để tác giả hồn thành luận án Cuối cùng, tác giả xin chân thành cảm ơn thành viên Gia đình, người ln dành cho tác giả tình cảm nồng ấm sẻ chia lúc khó khăn sống, động viên giúp đỡ tác giả q trình nghiên cứu Luận án quà tinh thần mà tác giả trân trọng gửi tặng đến thành viên Gia đình MỤC LỤC DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT .5 DANH MỤC CÁC HÌNH VÀ BẢNG BIỂU CHƯƠNG I : NHỮNG KIẾN THỨC CƠ SỞ 18 I.1 Tập mờ phép toán tập mờ 18 I.1.1.Tập mờ .18 I.1.2.Các phép toán tập mờ 19 1) Phép khử mờ 19 2) Phép kết nhập .20 3) Phép kéo theo mờ 21 4) Phép hợp thành quan hệ mờ 22 I.2 Biến ngôn ngữ 23 I.3 Phân hoạch mờ 24 I.4 Mơ hình mờ 25 I.5 Hệ dựa luật mờ (Hệ mờ) .26 1) Các thành phần hệ mờ 26 2) Các mục tiêu xây dựng FRBS 27 3) Ứng dụng hệ mờ 29 I.6 Đại số gia tử 32 1) Khái niệm Đại số gia tử 32 2) Một số tính chất Đại số gia tử tuyến tính 33 3) Độ đo tính mờ giá trị ngôn ngữ 34 4) Khoảng tính mờ 37 5) Định lượng ngữ nghĩa giá trị ngôn ngữ 38 I.7 Kết luận chương 40 CHƯƠNG TÍNH GIẢI NGHĨA ĐƯỢC CỦA KHUNG NHẬN THỨC NGÔN NGỮ TRONG CÁC HỆ MỜ NGÔN NGỮ 41 II.1.Mở đầu 41 II.2.Tính giải nghĩa LRBSs mức từ ngôn ngữ 44 II.2.1.Lược đồ giải tốn tính giải nghĩa biểu diễn tính tốn khung nhận thức ngơn ngữ 47 II.2.2.Ràng buộc tính giải nghĩa việc biểu diễn ngữ nghĩa từ biến 50 II.2.3.Bổ sung ràng buộc biểu diễn tính tốn khung NTNN 55 II.3.Giải nghĩa tính tốn LFoCs với tập mờ tam giác/ hình thang .58 II.4.Kết luận chương 63 CHƯƠNG TÍNH GIẢI NGHĨA ĐƯỢC THEO NGỮ NGHĨA THẾ GIỚI THỰC CỦA CÁC BIỂU THỨC NGÔN NGỮ 65 III.1.Mở đầu 65 III.2.Tính giải nghĩa theo ngữ nghĩa giới thực miền từ biến ngôn ngữ .67 III.2.1.Khái niệm tính giải nghĩa theo ngữ nghĩa giới thực (RWS) lý thuyết hình thức 68 III.2.2.Tính giải nghĩa ngữ nghĩa giới thực ngôn ngữ tự nhiên người đại số gia tử biến ngôn ngữ 77 III.3.Tính giải nghĩa ngữ nghĩa giới thực thành phần cấu thành hệ mờ 80 III.3.1.Tính giải nghĩa theo ngữ nghĩa giới thực khung nhận thức ngôn ngữ LFoCs 81 III.3.2.Khả giải nghĩa theo ngữ nghĩa giới thực biểu diễn tính tốn LRB ARM 85 III.4.Về tính giải nghĩa theo ngữ nghĩa giới thực biểu thức, phương pháp luận hay lý thuyết ngôn ngữ mờ 90 III.4.1.Kiểm tra tính giải nghĩa theo ngữ nghĩa giới thực số biểu thức mờ lý thuyết tập mờ .90 III.4.2.Phương pháp biểu diễn đồ thị sở luật ngơn ngữ tính giải nghĩa theo ngữ nghĩa giới thực 96 III.4.3.Phương pháp lập luận xấp xỉ thực biểu diễn đồ thị sở luật ngôn ngữ .100 III.5.Kết luận chương 105 KẾT LUẬN CỦA LUẬN ÁN 106 CÁC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 109 DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Các ký hiệu: AX tính AX * đủ (h) fm(x) A(x) l(x) fm Xk X(k) Comp C() Đại số gia tử tuyến Đại số gia tử tuyến tính đầy Độ đo tính mờ gia tử h Độ đo tính mờ hạng từ x Hàm định lượng giá trị ngôn ngữ biến Hàm xác định độ thuộc giá trị x vào tập mờ A Độ dài từ ngôn ngữ x Khoảng tính mờ giá trị ngơn ngữ Tập hạng từ có độ dài k Tập tất hạng từ có độ dài k Độ phức tạp hệ luật Tập hợp đối tượng tính tốn core(x) Lõi ngữ nghĩa từ x ℐℐint fuz trp CS Ngữ nghĩa khoảng Giải tập mờ Ngữ nghĩa ba tốn của từ từ Khơng gianbộ tính CSw Khơng gian tính tốn thích hợp với giới thực W Sw Cấu trúc giới thực W Các từ viết tắt: DB Database ĐSGT tử FoC Cognitive FRBS System FRB based Đại số gia Frame of Fuzzy Rule-based Fuzzy Rule- RB Rule-based KB Knowledge Base LRBS Linguistic Rule-based System LRB Linguistic Rule-based LFoC Liguistic Frame of Cognitive MF Membership Function SQM Semantically Quantifying Mapping RWS Real World Semantics LE Liguistic Expression CE Computational Expression FSyst Fuzzy System ARM Approximate Reasoning Method DANH MỤC CÁC HÌNH VÀ BẢNG BIỂU Các hình Hình 1.1 Tập mờ hình thang 19 Hình 1.2 Một cấu trúc phân hoạch mờ dạng đơn thể hạt 25 Hình 1.3 Một cấu trúc phân hoạch mờ dạng đa thể hạt 25 Hình 1.4 Bộ bốn (a,b,c,d) biểu diễn cho hàm thuộc dạng hình thang tập mờ 31 Hình 1.5 Cấu trúc thứ bậc đa thể hạt phân tách mơ hình tính mờ từ ngơn ngữ dựa quan hệ chung-riêng (generality-spcificity) qua tác động gia tử 34 Hình 1.6 Cấu trúc thứ bậc khoảng tính mờ từ ngơn ngữ biến xác định ánh xạ đẳng cấu f mơ hình tính mờ chúng 35 Hình 1.7 Độ đo tính mờ biến TRUTH 36 Hình 1.8 Khoảng tính mờ hạng từ biến TRUTH 38 Hình 2.1 Lược đồ giải nghĩa tính tốn I LFoC 47 Hình 2.2 54 (a) Ví dụ hai tam giác có thứ tự theo điều kiện (ii):(a, b, d) ≼m (a', b', d') (b) Ví dụ hai tam giác có thứ tự theo điều kiện (iii): (a, b, d) ≼w (a', b', d') Hình 2.3 Đa thể hạt với tập mờ tam giác/hình thang từ LFoC 60 Hình 3.1 Mối quan hệ lý thuyết hình thức, mơ hình ứng dụng chúng giới giới thực tương ứng 68 Hình 3.2 Lược đồ giải vấn đề giải nghĩa RWS 75 Hình 3.3 Biểu diễn đa thể hạt tam giác/hình thang giải nghĩa RWS XTUỔI,(2) 84 Hình 3.4 Hợp tập mờ biến CHIỀU_CAO 92 Hình 3.5 Biểu diễn tính tốn luật r1 r15 LRB ℛℬ đưa Bảng 3.1 95 Hình 3.6 Biểu diễn đồ thị số LRB qua điểm 102 Bảng biểu Bảng 3.1 FRB đơn giản cho truyền động tầng thứ 94 MỞ ĐẦU Trong thập niên gần khoa học công nghệ phát triển mạnh mẽ, sản sinh nhiều thiết bị máy móc hỗ trợ cho người lĩnh vực sống Trong số lĩnh vực, mong muốn máy móc mơ hành vi, khả lập luận người đưa cho người gợi ý tin cậy trình định Một đặc trưng bật người khả suy luận sở tri thức hình thành từ sống biểu thị ngơn ngữ tự nhiên Do máy móc muốn hành xử người phải trang bị sở tri thức khả lập luận ngơn ngữ Đây tốn phức tạp, để giải yêu cầu nhà khoa học nghiên cứu lý thuyết lẫn ứng dụng với mục đích đưa phương pháp nhằm mô khả lập luận người thiết bị máy móc Do đặc trưng ngơn ngữ tính mờ, tốn cần phải giải làm để hình thức hóa tốn học vấn đề ngữ nghĩa ngôn ngữ xử lý ngữ nghĩa ngôn ngữ mà người thường thao tác sống Trước yêu cầu đặt đó, năm 1965 Lotfi A Zadeh người đặt móng lĩnh vực [62] Ý tưởng ông ngữ nghĩa từ mờ biểu diễn hàm từ tập vũ trụ U vào đoạn [0, 1] hàm gọi tập mờ U Vì vậy, với tập mờ ứng với từ mờ vốn khơng tính tốn trở thành đối tượng tốn học hồn tồn tính toán Dựa lý thuyết tập mờ, hệ dựa luật mờ (Fuzzy Rule Based System - FRBS) phát triển trở thành công cụ mô gần gũi phương pháp suy luận lấy định người FRBS thu nhiều thành cơng giải tốn thực tiễn toán điều khiển, toán phân lớp, tốn hồi quy, tốn trích rút ngơn ngữ FRBS phát triển tảng lý thuyết tập mờ logic mờ, với thành phần luật mờ dạng if-then phương tiện tốt mô khả lập luận người giải vấn đề phức tạp với thơng tin khơng chắn, có tính mơ hồ Các …, ain,m) ∈ UX1 … UXm, giá trị đầu Um+1 tính phương pháp IntM2 phép kết nhập sau: Out(ain) = IntM2ℛℬ(��(ain,1, …, ain,m)) Định lý 3.4 Cho sở luật ngôn ngữ ℛℬ giả sử phép kết nhập phép trung bình cộng có véc tơ trọng số w = (w1, …, wm) ứng với m biến tiền đề L_IntM ��w Khi phép nội suy tuyến tínhnghĩa với phép kếtℛℬ, nhậpđược ��w, kí hiệu là giải nghĩa theo ngữ 2,w đó, giớicủa thực Chứng minh: Giả thử ℛℬ sở luật ngôn ngữ biểu diễn đồ thị với ánh xạ định lượng SQMj, j = 1, …, m+1 với lưới Grid2(ℛℬ) = {(��w[SQM1(x1,i), …,SQMm(xm,i)], SQMm+1(xm+1,i)): i =1,…, n } Vì ℛℬ đơn điệu tăng giả sử có hai luật ri ri’ có dạng (*) với hai véc tơ ngôn ngữ tạo từ ngôn ngữ xuất tiền đề chúng, kí hiệu x(ri) = (x1,i, …, xm,i) x(ri’) = (x1,i’, …, xm,i’), thỏa mãn điều kiện x(ri) ≤ x(ri’), tức xj,i ≤ xj,i’ với j = 1, …, m, ta phải có ri|Xm+1 = xi,m+1 ≤ ri’|Xm+1 = xi’,m+1 Vì SQMj đẳng cấu bảo tồn thứ tự nên có SQMj(xj,i) ≤ SQMj(xj,i’), j = 1, …, m+1, suy ��w(x(ri)) ≤ ��w(x(ri’)) Xét hai véc tơ đầu vào ain = (ain,1, …, ain,m) ≤ bin = (bin,1, …, bin,m) Khi đó, tương tự, có ��w(ain,1, …, ain,m) ≤ ��w(bin,1, …, bin,m) Có hai trường hợp sau: Trường 1:khác Tồn tạij1chứa đoạn [xác �� ��,hai ))]r)j1mà đầu mút w(x(r w(x(r làđiểm haihợp điểm lưới (ℛℬ )giá định luật vàhai rwj2hoành cho 2thẳng hai hoành độ ��