1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Catalytic science daniel duprez, fabrizio cavani (eds ) handbook of advanced methods and processes in oxidation catalysis from laboratory to industry (2014, imperial college press)

1K 177 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1.035
Dung lượng 20,25 MB

Nội dung

HANDBOOK OF ADVANCED METHODS AND PROCESSES IN OXIDATION CATA LYSIS From Laboratory to Industry P791_9781848167506_tp.indd 26/6/14 12:11 pm July 25, 2013 17:28 WSPC - Proceedings Trim Size: 9.75in x 6.5in This page intentionally left blank icmp12-master HANDBOOK OF ADVANCED METHODS AND PROCESSES IN OXIDATION CATA LYSIS From Laboratory to Industry Editors Daniel Duprez University of Poitiers, France Fabrizio Cavani University of Bologna, Italy ICP P791_9781848167506_tp.indd Imperial College Press 26/6/14 12:11 pm Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co Pte Ltd Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Duprez, Daniel, 1945– Handbook of advanced methods and processes in oxidation catalysis : from laboratory to industry / Daniel Duprez, University of Poitiers, France, Fabrizio Cavani, Universita di Bologna, Italy pages cm Includes bibliographical references and index ISBN 978-1-84816-750-6 (hardcover : alk paper) Oxidation Catalysis Chemistry, Organic I Cavani, Fabrizio II Title QD281.O9D87 2014 660'.28443 dc23 2014017262 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Copyright © 2014 by Imperial College Press All rights reserved This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher Typeset by Stallion Press Email: enquiries@stallionpress.com Printed in Singapore Catherine - Hdbk of Adv Methods & Processes.indd 11/6/2014 9:44:13 AM June 23, 2014 17:41 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis b1675-fm Preface Advanced Methods and Processes in Oxidation Catalysis From Laboratory to Industry edited by Daniel Duprez (University of Poitiers, France) & Fabrizio Cavani (Universit`a di Bologna, Italy) Since the discovery by Humphry Davy in 1817 of the flameless combustion of coal gas over Pt wires, tremendous progress has been made in the understanding of complex phenomena occurring in oxidation catalysis In parallel, advanced technologies were developed to make these processes more efficient and safer In the nineteenth century, researchers observed that hydrocarbon oxidation could lead to organic intermediates on noble metals The huge demand from the chemical industry for new compounds prompted them to take advantage of the selective oxidation to synthesize oxygenated chemicals Synthesis of new compounds required specific oxide catalysts much more selective than noble metals Considerable progress was made during the twentieth century while the development of cleaner, greener and safer catalytic processes remains a permanent objective of the chemical industry today This book offers a comprehensive overview of the most recent developments in both total oxidation and combustion and also in selective oxidation For each topic, fundamental aspects are paralleled with industrial applications The book covers oxidation catalysis, one of the major areas of industrial chemistry, outlining recent achievements, current challenges and future opportunities One distinguishing feature of the book is the selection of arguments which are emblematic of current trends in the chemical industry, such as miniaturization, use of alternative, greener oxidants, and innovative systems for pollutant abatement Topics outlined are described in terms of both catalyst and reaction chemistry, and also reactor and process technology The book is presented in two volumes The first ten chapters are devoted to total oxidation while the next eighteen chapters deal with selective oxidation v June 23, 2014 17:41 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis vi b1675-fm Preface Different aspects of total oxidation processes are reviewed in the first part of the book: hydrocarbon oxidation (Chapter 1) and soot oxidation (Chapter 2) for mobile applications while oxidation of volatile organic compounds (VOC) is treated in the next five chapters Chapter provides a general overview of VOC oxidation while chlorinated VOCs are specifically discussed in Chapter and persistent VOC in Chapter Plasma catalysis processes for VOC abatement are reviewed in Chapter Finally, Chapter gives the point of view of industry for the development and applications of catalysis for air depollution technologies Total oxidation is also used for energy production by combustion processes exemplified in Chapter The last two chapters are devoted to oxidation processes in liquid media by electrochemical techniques (Chapter 9) or more generally as "advanced oxidation processes" for water depollution (Chapter 10) The part devoted to selective oxidation includes chapters aimed at providing an overview of oxidation technologies from an industrial perspective, with contributions from chemical companies such as eni SpA, Radici Chimica, Polynt, Sabic, DSM, and Clariant (Chapters 11–16) Then, Chapters 17–19 gives an updated view of experimental tools and techniques aimed at the understanding of catalyst features and interactions between catalysts and reactants/products Chapters 20–23 are focussed on specific classes of homogenous and heterogeneous catalysts, such as vanadyl pyrophosphate, polyoxometalates, supported metals and metal complexes Finally, Chapters 24–28 deal with classes of reactions, reactor configurations and process technologies used in selective oxidation, again offering a perspective on recent developments and new trends, such as oxidation of alkanes, oxidations under supercritical conditions, use of non-conventional oxidants, membrane and structured reactors Daniel Duprez and Fabrizio Cavani June 23, 2014 17:41 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis b1675-fm Contents Preface v 1 Oxidation of CO and Hydrocarbons in Exhaust Gas Treatments Jacques Barbier Jr and Daniel Duprez 1.1 Introduction 1.2 The Pioneer Works (1970–1990) 1.3 Recent Investigations (After 1990) 1.4 Conclusions References Soot Oxidation in Particulate Filter Regeneration Junko Uchisawa, Akira Obuchi and Tetsuya Nanba 11 19 20 25 2.1 2.2 2.3 2.4 2.5 Introduction Method for Evaluation of Catalytic Soot Oxidation Activity Classification of PM Oxidation Catalyst Mechanisms and Examples of each Catalyst Type Practical Application and Improvement of Soot Oxidation Catalysts 2.6 Concluding Remarks and Outlook References 25 28 30 31 39 44 44 The Catalytic Oxidation of Hydrocarbon Volatile Organic Compounds Tomas Garcia, Benjamin Solsona and Stuart H Taylor 51 3.1 3.2 3.3 51 52 53 59 82 83 Introduction Technology Options for VOC Abatement Operational Parameters Affecting the Catalytic Combustion of VOCs 3.4 Review of VOC Oxidation Catalysts 3.5 Conclusions References vii June 23, 2014 17:41 9.75in x 6.5in viii Advanced Methods and Processes in Oxidation Catalysis Contents Catalytic Oxidation of Volatile Organic Compounds: Chlorinated Hydrocarbons Juan R Gonz´alez-Velasco, Asier Aranzabal, Be˜nat Pereda-Ayo, M Pilar Gonz´alez-Marcos, and Jos´e A Gonz´alez-Marcos 91 4.1 4.2 4.3 4.4 Introduction Catalysts for Chlorinated VOC Oxidation Kinetic Studies Influence of Water Vapour and Co-Pollutants in Feed Streams 4.5 Chlorinated VOC Catalyst Deactivation and Regeneration 4.6 Outlook and Conclusions Acknowledgements References Introduction Preliminary Study on POP Precursors Advanced Study: Oxidation of PAHs in the Presence of a Complex Pollutants Matrix 5.4 Conclusion References 132 132 138 145 149 150 Plasma Catalysis for Volatile Organic Compounds Abatement J Christopher Whitehead 6.1 6.2 6.3 6.4 6.5 91 94 98 102 112 120 123 124 Zeolites as Alternative Catalysts for the Oxidation of Persistent Organic Pollutants St´ephane Marie-Rose, Mihaela Taralunga, Xavier Chaucherie, Fran¸cois Nicol, Emmanuel Fiani, Thomas Belin, Patrick Magnoux and J´erˆome Mijoin 5.1 5.2 5.3 b1675-fm Introduction Plasma Catalyst Interactions Plasma Catalysis for the Abatement of Halomethanes Plasma Catalysis for the Abatement of Hydrocarbons The Role of Ozone in Plasma Catalysis for VOC Abatement 6.6 Cycled Systems for Plasma Catalytic Remediation 6.7 Conclusions Acknowledgments References 155 155 156 157 163 168 168 169 170 170 June 23, 2014 17:41 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis b1675-fm Contents ix Catalytic Abatement of Volatile Organic Compounds: Some Industrial Applications Pascaline Tran, James M Chen and Robert J Farrauto 173 7.1 7.2 7.3 Introduction Case #1: Catalytic Oxidation of Purified Terephthalic Acid Case #2: Oxidation of Nitrogen-Containing VOCs: Precious Metal Catalysts vs Base Metal Catalysts 7.4 Case #3: Regenerative Catalytic Oxidation Catalysts 7.5 Conclusions References Hydrocarbon Processing: Catalytic Combustion and Partial Oxidation to Syngas Unni Olsbye 8.1 Introduction 8.2 Catalytic Partial Oxidation of Hydrocarbons to Syngas 8.3 Catalytic Combustion References 173 176 198 Oxygen Activation for Fuel Cell and Electrochemical Process Applications Christophe Coutanceau and St`eve Baranton 9.1 Introduction 9.2 Thermodynamics 9.3 Molecular Oxygen Electroreduction 9.4 Atomic Oxygen Activation: Alcohol Electro-Oxidation 9.5 Conclusion References 198 200 209 211 216 10 Advanced Oxidation Processes in Water Treatment Gabriele Centi and Siglinda Perathoner 11 185 188 196 196 216 217 221 235 242 243 251 10.1 Advanced Oxidation Processes 10.2 Conclusions References 253 281 283 Selective Oxidation at SABIC: Innovative Catalysts and Technologies Edouard Mamedov and Khalid Karim 291 References 301 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1006 gold catalyst mononuclear gold complexes, 520 gold electrode, 224 gold nanoparticles, 520 Golodets, G., 62 Gololobov, A M., 12 Gonz´alez-Velasco, J R., 96, 104, 105, 110, 111, 136 graphite, 222 Griffith, J S., 225, 226 Groppi, G., 953, 971, 973 Gross, M., 33 Gryaznov, V., 925 Guillemot, M., 115, 116, 138 Guo, Y F., 165, 167 1-hexanol, 602 2-hydroxycyclohexanone, 590 H2 O2 , 389, 391, 393, 394, 608 H2 S, 527 H3+n [PMo12−nVn O40 ]· nH2 O, 590 H3 [PMo12 O40 ], 521 H3 [PMo12 O40 ] · 13H2 O, 515 H3 PW12 O40 , 617 H3 PW12 O40 /TiO2 , 600 H4 [PVMo11 O40 ] · 13H2 O, 515 H5 [PV2 Mo10 O40 ], 521 H5 PV2 Mo10 O40 , 612 H6 PMo9V3 O40 , 436 H-ZSM5, 480, 482 Haber–Weiss mechanism, 592 Halcon, 553 Haldor Topsoe, 969 halide compounds, 175 Halocat , 97 halogenated hydrocarbons, 92 Han, L., 275 Haralampous, O., 41 Harrick Inc, 500 Haruta, M., 66 Hasegawa, Y., 932 HAuCl4 , 520 Hawker, P., 35 He, Z., 264 heat of chemisorption, 11 CO, 11 O2 , 11 heat-integrated wall reactor, 206 Heck, R., 97 Heitnes, K., 207 heme-cytochrome P450, 591 b1675-index Index Henning, D., 958 hept-1-ene, 18 heteronuclear magnetic resonance, 606 heteropolyacids, 300, 390, 400, 514, 778, 788, 801 heteropolyanions, 586 heteropolyblue complex, 595 heteropolyoxometallates, 514 heteropolyoxomolybdates, 521 hexamethylbenzene, 19 hexanal, 406 hexane, 5, 13, 18, 110 Hickman, D., 207 Hicks, R., 6, 65 high resolution EELS, 460 high resolution electron microscopy (HREM), 556 highest occupied molecular orbital, 612 Hitmi, H., 237 Hodnett, B., 62 Hoechst Company, 808 hollow-fibre perovskite membranes, 792 Holmen, A., 953, 955, 956 honeycomb, 26 honeycomb copper substrates, 977, 980 honeycomb monolith, 943, 946, 948, 951 Horn, R., 959, 960 hot spot, 572 HREELS, 464 Hu, Y., 203 Huff, M., 956, 960 Hăuls AG, 398 Humffray, A., 223 Huntsmann, 551 Huq, A., 221 Hutchings, G., 66 hybrid membranes, 599 hybrid polymeric films, 596 hybrid polyoxoanion [(PhPO)2 SiW10 O36 ]4− , 605 hybrid polyoxometalates, 588 HydranoneTM , 405 hydrazine, 482 hydrocarbon oxidation, 18 effect of CO, 18 hydrogen cyanide, 403, 804 production, 964 hydrogen peroxide, 221–223, 234, 255, 256, 589, 600, 609, 616 decomposition, 616 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index hydrogen production, 926 hydrogenolysis, hydrolysis, 149 hydroquinone, 392, 600 hydroxyl radicals, 253, 254, 258, 259, 261, 265, 270, 276 hydroxylamine, 482 hydroxylation, 390, 391, 592 Hyflon , 597, 599 Ibn Rushd complex, 294 ICI, 553 ignition temperature, 398 in situ characterization methods, 496 in situ diffuse reflectance infrared Fourier transform spectroscopy, 539 in situ FTIR spectroscopy, 603 in situ NMR, 438 in situ Raman spectroscopy, 421, 435 in situ UV-vis spectroscopy, 540 in situ X-ray absorption spectroscopy, 562 in situ XAS, 515 in situ XRD, 514, 515 incipient wetness impregnation, 74 indane, 599 indeno(1,2,3-cd)pyrene, 134 indium tin oxide electrode, 617 induction time, 592 industrial wastewater, 252, 258, 262, 263 Ineos, 809, 984 infrared reflectance spectroscopy, 236 infrared reflection absorption spectroscopy, 458, 467 infrared spectroscopy, 447 diffuse reflectance infrared, 448, 453 transmission/absorption IR spectroscopy, 448, 453 inhibitors of oxidation, 10 International Centre for Diffraction Data, 510 intraparticle mass transfer, 574 Ioannides, T., 206 ionic liquids, 390, 607 Iopamidol, 260 IR-active vibrational transitions, 449 IR cells, 463 IRAS, 464 iron phthalocyanine, 234 iron porphyrin, 599 iron tetrasulfophthalocyanine, 394 iron(III) chloride/H2 O2 , 393 b1675-index 1007 iron(III) salts, 394 iron-molybdate catalyst, 421, 423, 513 isobutane, 435, 787, 788, 804, 805 oxidation, 435 isobutene, 63, 300, 514, 787, 789, 804 ammoxidation, 804 isobutyraldehyde, 804 isobutyric acid, 804 isomerization, 787 isooctane, 18 isophorone, 397–399, 401 epoxidation, 397 oxidation, 398, 400 isophthalic acid, 258 isophytol, 389, 392 isopolyanions, 586 isoprenoid, 394 isopropanol, 54, 57 isoproturon, 260 isotopic labelling, 426, 538 isotopic pulse technique, 203 isotopically labeled 18 O2 , 430 Iwasita, T., 237 Jamil, T., 256 Japan Catalyst Chem Ind., 553 Jelles, S., 31 Jiangshan Pharmaceutical Company, 383 Johansson, S., 12 Jones, J., 112 2-keto-L-gulonic acid, 383, 384 2-KGA, 386 K4 (VO)3 (SO4 ), 439 K8 [HBW11 O39 ]·13H2 O, 602 Kawi, S., 108 Keggin-type heteropoly compounds, 394 Keggin-type heteropolyacid, 514, 787 Keggin-type polyoxometalates, 588, 805 Kenox, 263 ketene, 807 Ketogulonicigenium, 385, 386 Ketogulonicigenium vulgare, 387, 388 ketoisophorone (KIP), 397 ketones, 57 ketonization, 594, 601 ketopantolactone, 405 KHSO5 , 613 Kieβling, D., 115 Kim, H H., 164, 169 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1008 b1675-index Index Kim, S., 280 kinetic enzymatic resolution, 403 kinetic orders, kinetic studies, 99 Kirner, J., 234 KIT-1, 77 KIT-6 silica, 79 Knudsen diffusion regime, 534, 537 Koltsakis, G., 41 Komatsu, T., 95 Konakion , 392 Koutecky–Levich equation, 229 Koutecky–Levich plots, 230 Kraushaar-Czarnetzki, B., 987 Krebs polyoxometalates, 591 Krishna, K., 39 Kubelka–Munk function, 500, 532 Kuroki, T., 169 Kustov, A., 43 ligand to metal charge transfer (LMCT), 499, 595 light alkanes, light-off temperatures, linalool, 394, 395 Lindqvist POM, 617 Linuron, 260 Liotta, L., 68 liquefied natural gas (LNG), 771 liquefied petroleum gas (LPG), 770, 771 liquid phase reduction deposition, 74 Liu, Q., 68 loose contact, 29, 35 L´opez-Fonseca, R., 95, 96, 105, 107, 109, 138 LoProx, 263 Lou, J., 101 Lummus Technology, 794 Lummus/Polynt, 551 Lunsford, J H., 201, 503 Lurgi, 969 L-ascorbic acid, 382, 385 oxidation, 382 L-galactono-γ-lactone, 388 L-galactose, 388 L-gulono-γ-lactone dehydrogenase, 388 L-methionine, 610, 611 L-methionine methyl ester, 600 L-sorbose, 383–385, 387 oxidation, 384 L-sorbosone, 385 L-sorbosone dehydrogenase, 388 Lacroix, M., 950 Lambert−Beer law, 500 Lange, J., 953 Langmuir–Hinshelwood mechanism, 4, 12 lattice mismatch, 559 lattice O2− species, 550, 569 layer-by-layer (LBL) technique, 616 Lee, S., 101 Lef`evre, M., 233 LEIS spectroscopy, 430 Levich, V G., 229 Lewis acid sites, 454, 480, 482, 607, 782, 785, 794 Lewis, W., 208 Li5 [RuII (DMSO)PW11 O39 ], 594 Li, W., 83 Li/MgO, 811 Liander, H., 200 1-methyl-1,4-cyclohexadiene, 603 1-methylnaphthalene, 138, 146 2-methyl-1-naphthol, 394 2-methylnaphthalene, 392, 394 2MgO·2Al2 O3 ·5SiO2 , 26 (MoVW)5 O14 , 788 10− , 612 [MnIII ZnW(ZnW9 O34 )2 ] [Mo6 O18 (NC6 H4 CHNCH2 )]2-, 617 [{M(O2 )(α-XW11 O39 )}2 ]12− , 610 M=O species, 456, 775 m-xylene, 19, 76 M1 phase, 777, 785, 788, 791, 798, 801 magnesium ferrite, 391 maleic anhydride (MA), 433, 549, 551, 567, 574, 579, 783, 786, 792, 794, 985, 989 Mallens, E., 204 manganese dioxide, 404 manganese-based catalysts, 187 manganosite, 454 Mars–van Krevelen mechanism, 33, 64, 99, 564, 773 MAS-NMR spectroscopy, 515 mass spectrometer, 530 Masui, T., 75 MCM-41, 77, 83, 596 MeBr (methyl bromide) oxidation, 183 surface acidity, 182 MEIRAS, 465 membrane bioreactors, 256 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index membrane reactors, 208, 549, 572, 579, 795, 810, 921, 922, 927, 928 inorganic membranes, 922 oxidative coupling of methane, 927 oxidative dehydrogenation, 928 oxygen permeability, 931 partial oxidation of methane, 933 polymeric membranes, 922 propene epoxidation, 933 three-phase reactions, 933 membrane technology, 56 menadione, 392–394 Menaquinol, 392 Mendyka, B., 111 mercury, 222 mesitylene, 19 mesoporous chromia, 79, 80 mesostructured LaCoO3 perovskite, 70 metal chalcogenides, 233 metal gauzes, 951 metal membranes, 792 metal oxide, 62 heat of formation, 62 metal particle size, 3, 63, 64 metal-air batteries, 216 metal-peroxo complexes, 601 metal-peroxo intermediates, 589 metal-structured catalyst carriers, 988 Fanning friction factors, 988 Nusselt numbers, 988 metal-support interface, 12 CO oxidation, 12 metallic membranes, 925 hydrogen separation, 925 methacrolein, 300, 513, 514, 767, 787, 788, 804–806 methacrylic acid, 300, 301, 435, 513, 767, 788, 804, 805 methacrylonitrile, 804 methanation, 944 ruthenium catalysts, 944 methane, 5, 13, 59, 67, 71, 173, 424, 498, 767, 809 halogenation, 809 oxidation, 424, 812, 925 oxidative coupling, 809, 811 oxihydrohalogenation, 809 partial oxidation, 498, 809 steam reforming, 201, 810 sulfonation, 809 b1675-index 1009 methane combustion, 67 Au/Co3 O4 , 67 methane mono-oxygenase, 591 methane oxidation, 6, 7, 64, 925 palladium, palladium-containing perovskite, 71 methanol, 5, 179, 195, 199, 236, 262, 275, 421, 435, 463, 465–467, 469, 513, 528, 807, 812 carbonylation, 807 oxidation, 421, 465, 468, 528, 969, 974 steam reforming, 465, 469 methanol electro-oxidation, 239, 240, 242 molybdenum, 242 oxy-hydroxyl species, 242 PtRu catalyst, 240 methoxides, 466 methyl acetate, 177 methyl amyl ketone, 192 methyl benzoate, 590 methyl bromide, 176, 177, 180–182 methyl chloride, 809 methyl ethyl ketone, 54, 57, 192, 193 methyl formate, 465 methyl methacrylate, 261, 300, 805 methyl propionate, 804 methyl p-tolylsulfide, 607 methyl tert-buthyl ether, 259 methyl-2-heptane, 16 methylbisulfate, 809 methylformate, 467 methylphenylglycine, 260 methyltrioxorhenium, 391, 393 Mg3V2 O8 , 779 MgAl2 O4 , 451 MgAl-hydrotalcite, 400 MgCr2 O4 , 456 MgFe2 O4 , 391, 477 MgO, 463 MgVAPO-5, 780 Miao, S., 67 Michael, B., 960 microalgae, 387 microemulsion polymerization, 618 microwave heating, 593, 607 microwave irradiation, 404, 607, 611 microwave-assisted polyol method, 229 microwave-assisted polyol process, 227 MIERS, 503 Milt, V., 33, 38 Miranda, B., 101, 115, 118 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1010 Mitsubishi, 553, 776, 798, 799, 805 Mitsubishi Chemical, 798, 808 Mitsubishi Gas Chem., 804 Mitsui Toatsu Chemicals, 798 mixed culture, 385 mixed ionic/electronic conductors (MIEC), 208 Mleczko, L., 206 Mn ferrite, 478 Mn3 O4 , 454, 467 Mn(III) acetate, 400 Mn-salen complexes, 398 Mn/Na2 WO4 /SiO2 , 810 MnO, 454 MnO2 , 390, 467 MnOx -CuO-TiO2 , 482 MnOx/Al2 O3 , 478 Mo oxidation state, 522 Mo0.61V0.31 Nb0.08 Ox , 808 Mo17 O47 , 775 Mo2.5V1.0 Nb0.32 Ox , 292, 293 palladium, 293 Mo4 O11 , 775 Mo5 O14 , 775 Mo9 O16 , 775 Mo-O-Mo bonds, 426 Mo-V-Nb-O, 808 Mo-V-Nb-Pd-O, 808 Mo-V-Te-Nb-O, 799, 801 Mo-V-W-O, 800 Molina, C., 281 molten alkali sulfate-vanadia system, 438 molybdenum, 66 molybdovanadophosphates, 400 monochloroacetic acid, 807 monocyclic aromatics, 17 monolayer coverage, 429 monolith pitch, 975 monolith reactors, 810 monolithic catalysts, 945, 976, 980 CO oxidation, 981 heat transfer coefficient, 982 Monsanto, 533, 551, 553, 794, 807 montmorillonites, 277 MoO2 , 775 MoO3 , 33, 404, 423, 424, 468, 515 MoO3 /SiO2 , 424 MoO3 /Zr0.75 Ce0.25 O2 , 468 MoO2− , 552 Morcos, I., 223 b1675-index Index mordenite, 452 Moro-Oka, Y., 62 Moulijn, J., 970 MoV0.3 Te0.17 Nb0.12 Ox , 803 MoVNb oxide, 291–293, 791, 808 MoVNbPd oxide, 294 phosphorus, 292 MoVTe(Sb)NbO, 782 MoVTeNbO, 504, 784, 785, 803 Mul, G., 33 multilayer enhanced infrared reflection absorption spectroscopy, 465 multiplet site, 551 multiwalled carbon nanotubes, 617 Mundschau, M., 924 Musialik-Piotrowska, A., 111 MWCNTs, 617 myrcene, 396 1-naphthol, 394 1,5-naphthalenedisulfonic acids, 260 4-nitrophenol, 280 (NH4 )HSO4 , 804 (NH4 )3 H6 MeMo6 O24 · 6H2 O, 513 [Ni(H2 O)NaH2W17 O55 F6 ]9− , 609 NV O2 [H4 PV2 Mo10 O40 ] complex, 612 N2 O, 536, 538 decomposition, 538 N,N-Dimethylsulfamid, 260 N-[3-(triethoxysilyl)propyl]-2-carbomethoxy3,4-fulleropyrrolidine, 600 n-butane, 61, 69, 433, 477, 549, 558, 560, 565, 574, 577, 768, 771, 772, 779, 780, 783, 786, 789, 792, 807, 964 oxidation, 433, 989 oxidative dehydrogenation, 477 n-butylbenzene, 19 n-decane, 16 n-decylbenzene, 19 n-hexadecane, 16 n-hexane, 16, 54, 109, 111 N-hydroxyphthalimide, 399, 401 N-methyl-2-[10-(triethoxysilyl)decyl]-3,4fulleropyr-rolidine, 600 N-methyl-2-pyrolidone, 255 N-nitrosodimethylamine, 254 n-nonane, 16 n-octane, 16 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index n-pentane, 783 Na2 MoO4 , 403 Na2WO4 –MnOx /SiO2 , 811 Na2WO4 /Co–Mn/SiO2 , 811 Na4 H3 [SiW9Al3 (H2 O)3 O37 ]·12(H2 O), 609 Na6 [H2 ZnSiW11 O40 ]·12H2 O, 609 Na9 [SbW9 O33 ], 602 Nafion, 217, 236 NaIO4 , 613 Nakagawa, K., 202 nanosecond laser flash photolysis, 615 nanosecond time resolved FTIR measurements, 464 naphthalene, 19, 136, 137 naproxen, 256 Narui, K., 64 Nb2 O5 , 456 Nb-based catalyst, 394 Neeft, J., 28 nerol, 396 Ni catalysts, 65, 809 Ni0.63 Nb0.19 Ta0.18 Ox , 791 Ni-Al mixed oxides, 450 Ni-Mg-Al mixed oxides, 450 Ni-molybdates, 801 Ni-Nb-O, 774, 792 NiAl2 O4 , 451 nickel, 65 nickel-alloy catalyst, 383 Nieuwenhuys, B E., 11, 66 NiO, 774, 791 niobium, 66, 68 Nippon Catalytic Chemical, 798 Nippon Shokubai Kagaku, 272 nitrate salts, 612 nitrogen monoxide (NO), 461 nitrogen-Containing VOCs, 185 nitrous oxide (N2 O), 612 NMR MAS, 556 NO, 3, 461, 535 NO2 , 31, 480 NO2 mediating, 37 non-steady state experiments, 533 non-stoichiometric oxide, 774 North China Pharmaceutical Group Corp, 383 Northeast Pharmaceutical Group Company Ltd, 383 NOx , 1, 479, 480, 482, 483 reduction, 480 b1675-index 1011 NOx storage materials, 31 Ntainjua, N., 136 nucleophilic O2− , 773 Nusselt and Sherwood numbers, 947 nylon-6, 405 1-octanol, 602 2-octanol, 602 2-octenes, 602 2-oxopantolactone, 403 18 O/16 O exchange, 457 o-chlorophenol, 274 o-xylene, 5, 58, 73, 436, 475, 477, 550, 578 oxidation, 436, 477 O isotopic exchange, 550 O− species, 773 O2− , 552 O2 chemisorption, OCM, 809, 810 oct-1-ene, 17, 18 octa-1,5-diene, 17 octa-1,7-diene, 17 octosquare asymmetric filter, 40 ODH, 774, 780, 781, 784, 789, 790 ODS, 483 OH radicals, 155 Oh, S E., 65 Oh, S H., 12 olefin isomerization, 463 olefins, 51 olive oil mill wastewater, 275 Olsbye, U., 206 open circuit voltage, 219 open-cell foams, 943, 950 Ergun parameters, 950 sponges, 943 operando ESR, 438 operando infrared spectroscopy, 432, 483 operando Raman spectroscopy, 421, 426, 427, 429, 431, 438 operando spectroscopy, 420, 463, 507 Orcan, 263 Ordo˜nez, S., 73 organic hypohalides, 404 organochlorine compounds, 256 organometallic cerium compound, 40 Osaka Gas Process, 272 Ostwald process, 536 Otsuka, K., 208 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1012 overvoltage, 220 oxalic acid, 271 oxalyl chloride, 404 oxamic acid, 267 OxanoneTM , 405, 406 oxene intermediates, 589 oxidation current density, 239 oxidation of aromatic hydrocarbons, 82 zeolite catalysts, 82 oxidation of light alkanes, 13, 14, 69 manganese oxide, 69 perovskites, 69 turnover frequency of Pt, 13, 14 oxidation of SO2 , 26 oxidative cleavage, 601, 610, 613 oxidative coupling of methane, 930 oxidative decomposition of DCE, 111 Cex Zr1−x O2 mixed oxides, 111 oxidative dehydrogenation, 297, 450, 541, 771, 787, 789, 791, 808, 930, 932, 943, 952, 953 cyclohexane, 955 ethane, 952, 956, 958–960, 962 LaMnO3 -based monoliths, 962 membrane reactors, 954 monolithic catalysts, 954 n-butane, 952 n-hexane, 955 n-pentane, 955 peroxo radical species, 954 propane, 952, 956, 962 Pt- and Rh-coated monoliths, 960 Pt-Sn coated monoliths, 955, 956, 958 steam reforming, 961 vanadium oxide, 953 VMgO-washcoated monolith, 956 oxidative desulfurization, 483 oxidative esterification of aldehydes, 520 oxidative reforming of ethanol, 925 Oxo-D process, 477 oxychlorination, 984 oxygen adsorption energy, 232 oxygen electroreduction, 221 oxygen limit concentration, 402 oxygen mobility, 66, 80 oxygen reduction mechanism, 225 oxygen reduction reaction (ORR), 216, 228 oxygen storage capacity, 1, 34 oxygen vacancies, 562 oxygenated compounds, 193 Oxyjet, 263 b1675-index Index Ozawa, T., 29 ozonation, 261, 264 ozonation systems, 259 ozone, 92, 158, 166, 168, 173, 254, 255, 257, 264, 268 ozone depletion, 52 1-phenylethanol, 597 3-picoline, 504 (PDMS-(TBA)4 W10 O32 , 596 (31 P NMR), 606 [(PhPO)2 SiW10 O36 ]4− , 607 [P2 W17 O61 ]10− , 617 [PMo12 O40 ]3− , 616 [PW12 O40 ]3− , 601, 618 {PO4 [MO(O2 )2 ]4 }3− , 601 p-aminophenol, 264 p-coumaric acid, 279 p-cymene, 590 p-hydroxybenzoic, 280 p-nitrophenol, 274 p-type semi-conductivity, 562 p-xylene, 78, 177 packed-bed enclosed membrane reactor, 792, 811, 927, 929 ethylene and propylene epoxidation, 929 methanol to formaldehyde, 929 n-butane oxidation, 928 n-butene oxidation to butadiene, 929 propane oxidation, 929 styrene oxidation, 929 Padilla, A., 114, 115 Padovani, C., 200 Palazzolo, M., 54, 56, 57 palladium catalyst, 1, 2, 9, 52, 62, 64, 384, 404 palladium(II) complexes, 396 pantolactone, 405 Papenmeier, D., 58 paper mill wastewater, 256 Park, S., 242 Parmaliana, A., 944 Parsons equation, 235 particle size, 574 particulate filters, passive regenerating systems, 41 Pastor, E., 237 Paukshtis, E A., 95 Pauling, L., 225–227 Pavlova, S., 962 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index Pd-Au/SiO2 , 295, 296 Pd-Pt nanoparticles, 526 Pd/Al2 O3 , 459, 464 Pd/CeO2 -ZrO2 , 459 Pd/SiO2 catalysts, 73 PdCl2 (CH3 CN)2 , 396 PdO, 459 pentachlorphenol, 254 perchloroethylene, 97 perfluoro compounds, 175 perfluoropolymers, 597 periodic feed reactor, 549 perovskite hollow fiber membrane reactor, 811 perovskites, 81, 98, 115 peroxide, 32, 255 peroxide-like species, O2− , 458 peroxo species, 773 peroxone process, 257 peroxotungstate complexes, 601, 608 peroxovanadates, 541 persistent organic pollutants (POPs), 132 Pestryakov, A., 986 Petro-Tex, 477 Pfeifer, M., 37 phase transfer catalyst, 393 phenol, 257, 267, 271, 273–275, 278, 281, 408, 591, 600 phenolic compounds, 264 phosgene, 92 phosphomolybdic acid, 400 phosphorus compounds, 77 inhibiting effect on the oxidation reaction, 77 photo-electrochemistry, 617 photo-Fenton, 260, 262, 271, 276 photo-Fenton process, 256, 257 photo-oxidation, 391 photocatalysis, 269, 270, 595 photocatalytic oxygenation, 595 photochemical degradation processes, 253 photochemical smog, 52 photoexcitation, 596 photoholes, 270 photosensitization, 401 photosensitizer, 253, 615 photosystem II enzyme, 613 phtalide, 968 phthalic anhydride, 436, 474, 578, 767, 793, 969 b1675-index 1013 phthalic anhydride production, 968 V2 O5 -TiO2 , 969 phylloquinone, 392 pi-allyl intermediate, 801 pi-electrons C=C double bond, 10 pillared clays, 277 pinane, 395 oxidation, 395 pinane-2-hydroperoxide, 394, 395 pinanol, 395 pinene, 193, 394–396 pivalaldehydes, 403 plasma catalysis, 155, 157, 159, 160, 163, 168 Ag/TiO2 catalysts, 165 cycled systems, 168 destruction of chlorofluorocarbons, 157 excited state species, 155 honeycomb zeolite, 169 manganese oxide, 165 NOx emissions, 159 propane and propene, 163 role of ozone, 155 titanium dioxide, 159 toluene, 164 uptake of chlorine, 160 plasma reactor, 156 coupled with a catalyst, 156 plasma-catalysis processing, 161 phosgene, 161 plasma-induced activation, 167 plasma-produced species, 161 chloromethoxy species, 161 chloroperoxy radicals, 161 platinum catalyst, 1, 2, 9, 52, 62, 64, 77, 384, 404, 527, 540 sepiolite, 77 platinum electrodes, 221 PM-IRAS, 464 polar phonons, 448 polarization curves, 218, 225 polarization-modulation infrared reflection absorption spectroscopy, 464 pollutants, 1, hydrocarbons, poly-methyl-methacrylate, 261, 804 polyacrylamide, 615 polyalkylbenzenes, 19 polyaniline, 616 polybutylene terephthalate resins, 176 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1014 polychlorinated benzenes, 137 polychlorinated biphenyls, 133 polychlorinated dibenzo-p-dioxins (PCDD/Fs), 132 polychlorobenzenes, 133, 141, 144 polycyclic aromatic hydrocarbons (PAHs), 19, 132, 133 polydimethylsiloxane, 596, 933 polyethylenamine, 616 polyethylene terephthalate, 176 polyhydroxy compounds, 382, 384 polymeric membranes, 596, 933 Polynt SpA, 982, 983 p-xylene oxidation, 982 polyoxometalates, 390, 394, 435, 513, 586, 587 electrostatic interactions, 616 encapsulation, 617 heterogenization, 615 hybrid material, 616 hybrid polyoxometalates, 588, 617 lacunary polyoxometalates, 587 physical entrapment, 615 surfactant encapsulated polyoxometalates, 597 transition metals substituted polyoxometalates (TMSPs), 587 polyoxomolybdates (POMs), 586, 588, 590, 595, 809 polyoxotungstates, 595 polyoxovanadates, 595 polyvinyl alcohol, 615 polyvinyl pyrrolidone, 615 polyvinylidene difluoride, 596 porous membrane reactors, 551, 811, 925 Postole, G., 15 potassium monopersulfate, 613 potential efficiency, 220 Prasad, R., 54 preparation of manganese catalysts, 80 molten salt technique, 80 pressure drop, 573, 770 pressure gap, 533 Prettre, M., 201 primary C–H bonds, 790 Primidone, 260 probe molecules, 460 prokaryotes, 387, 388 promoters, 553, 794 propan-2-ol, 595 b1675-index Index propane, 5, 13, 16, 61, 62, 66–69, 297–299, 429, 432, 504, 513, 514, 541, 577, 768, 771, 772, 779, 780, 784, 787, 789, 796, 797, 799–801, 964 ammoxidation, 432, 504, 797 co-feeding CO2 , 298 dimerizaton, 298 oxidation, 7, 14, 432, 796, 800, 928 oxidative dehydrogenation, 429 propane ammoxidation, 776 selective oxidation, 297 propane catalytic combustion, 68 superficial electrophilic oxygen, 68 propane oxidation, 7, 14, 432, 796, 800 activation energies, cobalt oxide, 68 kinetics and mechanisms, Pd, Pt and Rh catalysts, rate-determining step, propanol, propellant, 970 propene, 513, 541, 780 propionaldehyde, 964 propylene, 61, 62, 193, 297, 429, 513, 541, 550, 609, 769, 772, 780, 784, 789, 800, 801, 952, 955 ammoxidation, 429, 796 propylene oxidation, 9, 10, 15, 429 acidic promoters, 15 activation energies, 10 basic promoters, 15 intrinsic activity, kinetic orders, 10 kinetics and mechanisms, Pd, Pt and Rh catalysts, 10 propyne, 804 proton exchange electrolyte fuel cell, 216 proton exchange membrane, 217 Prototheca moriformis, 388 PROX, 470, 473 Pseudomonas, 386 pseudomorphicity, 554 Pt(II) complex, 814 Pt-K-Al2 O3 , 460 Pt-Rh gauzes, 536 Pt-Rh/Al2 O3 , 498 Pt-Rh/CeO2 -Al2 O3 , Pt/γ-Al2 O3 , 470 Pt/Al2 O3 , 471 Pt/CeO2 -Al2 O3 , 470 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index Pt/TiO2 , 474 PtO2 /polyaniline, 508 PTT Chemical, 799 PVDF-(TBA)4W10 O32 ), 596 pyridine, 805 pyrolysis, 396 pyrometer, 960 quadrupole mass spectrometer, 534 quantum yield, 595, 599, 615 (R4 N)4 W10 O32 , 602 (Rf N)4W10 O32 , 597 (R)-panthenol, 403 (R)-pantolactone, 403 (R)-pantothenic acid, 403 [RuII (DMSO)PW11 O39 ]5− , 613 [RuII (DMSO)PW11 O39 ]5− , 613 [Ru4 (µ-OH)2 (µ-O)4 (H2 O)4 (γ-SiW10 O36 )2 ]10− , 616 [Ru4 (µ-OH)2 (µ-O)4 (H2 O)4 (γSiW10 O36 )2 ]10− , 617 [Ru(bpy)3 ]3+ , 614 [Ru(bpy)3 ]2W10 O32 , 600 [Ru{(µ-dpp)Ru(bpy)2 }3 ]8+ , 615 [Ru(bpy)3 ]2+ , 600 {RuIV (µ-OH)2 (µ-O)4 (H2 O)4 [γ-SiW10 O36 ]}10− , 614 {Ru4 (µ-O)5 (µ-OH)(H2 O)4 (γ-PW10 O36 )2 }9− , 615 Rachapudi, R., 114, 115 radial heat transfer, 984 radial mixing, 573 radical chain mechanism, 593 radical scavenger, 260, 264, 268, 407, 592 Ragaini, V., 988 Raman spectroscopy, 420, 556 Raschig rings, 423 RCO 5000, 192 RCO 6000, 192 RCO 7000, 192, 193 Reactive Blue 5, 267 redox decoupling, 550, 552, 575 redox mechanism, 293, 454, 473, 550 regenerative catalytic oxidation (RCO), 188 RCO 5000, 195 RCO 6000, 195 regenerative heat sink chambers, 189 regenerative heat recovery, 189 b1675-index 1015 regenerative oxidation catalyst technology, 173 Reichstein process, 383 Reppe process, 795 Rh catalysts, 810 Rh-Pd nanoparticles, 526 Rh-Pt nanoparticles, 526 Rh-ZSM-5, 538 rhodium catalyst, 1, 2, 9, 65, 810 Rhone-Poulenc, 798 Rice, 255 Richardson, J., 949 Rideal mechanism, Ried, 255 Riga, A., 272 rock salt-type structure, 450 rocket thrusters, 970 Rohm and Haas, 798, 805 rose oxide, 401 Ross, J., 112 Rossin, J., 58 Rostrup-Nielsen, J., 204, 205 rotating ring-disc electrode technique, 222 Rousseau, S., 237 Royer, S., 11 Ru4 (POM), 614, 615 Ru/Al2 O3 , 810 Ru/CeO2 catalyst, 274 Ru/SiO2 , 814 Ruckenstein, E., 203 RuCl2 (PPh3 )3 , 404 RuCl3 , 404 Ruiz, P., 66 runaway, 579 RuO2 , 524 Russo, N., 71 ruthenium catalyst, 393, 405 Ru tetroxide, TW catalysts, ruthenium dioxide, 404 ruthenium–porphyrin complex, 400 rutile, 776, 797 Ryoo, M., 77 SABIC, 291, 295, 300, 799 Sabox process, 808 Saccharomyces cerevisiae, 388 Sadikov, V., 962 SAES GETTERS, 987 salcomine, 390 sandwich-like complexes, 608 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1016 Santos, M., 206 saponites, 277 Sasol, 451 SAXS, 497, 509, 510 Sb2 O3 , 775 Sb2 O5 , 775 Sb6 O13 , 775 Sb6 O13 OH, 775 Sb-V-O, 432 SBA-15, 83 SbVO4 , 433 scanning electron microscopy, 555 Schiff base, 390, 398 Schlatter S ratio, Schlatter, J., Schmidt, L., 206, 207, 209, 210, 951, 955, 956, 958, 960, 963, 964, 965 Schrăodinger equation, 502 SCO, 479, 482 SCR, 479, 480, 483, 508, 535 fast SCR, 480, 482 scrubber, 53 secondary C–H bonds, 790 Sein, M., 257 Seiyama, T., 70 selective catalytic reduction, 479 selective oxidation of NH3 , 966 Co-FeV-Bi oxides, 968 promoted iron oxides, 967 Pt-based gauzes, 966 semi-conductivity, 551 SEPs, 616 sequential process, 385 Serre, C., 12 SFG spectroscopy, 464 Shimizu, K., 35 short contact time reactors, 207, 810 short-lived radicals, 503 Shropshire, J., 242 side-chain oxidation, 408 silicomolybdic acid, 425 silicon carbide (SiC), 26 SILP, 616 Siluria Technologies, 812 silver catalysts, 421 singlet oxygen, 401 singlet oxygen lifetime, 403 singlet oxygenation, 401 Sinha, A., 79 b1675-index Index Siralox, 451 site isolation, 773 Sn-Sb-O, 550 SO2 , 438 oxidation, 438 SO3 , 438, 814 sodium molybdate, 402 sodium periodate (NaIO4 ), 404, 613 soft reactive grinding, 68 sol–gel method Pd/SiO2 catalysts, 73 Solsona, B., 67 soluble organic fraction, 25 Somorjai, G A., 11 soot oxidation, 25, 28, 34 CeO2 , 34 mediating catalysts, 31 mobile catalysts, 31 mobile oxygen catalysts, 31 NO2 mediating catalysis, 36 NOx storage materials, 38, 42, 43 oxygen mobility, 25 SO2 promotion effect, 36 temperature-programmed reaction, 28 soot oxidation catalysts, 30, 35 chlorides or oxychlorides, 33 metal nitrates, 33 perovskite-type oxides, 35, 38 soot particulates, sorbitol dehydrogenase, 383 sorbose dehydrogenase, 385 sorbosone dehydrogenase, 386 Sotowa, K., 932 Soutsas, K., 272 space-time yield, 403, 569 spectator species, 464 spin coating, 615 spin Hamiltonian, 503, 507 spin-echo mapping, 556 spinel, 391 Spivey, J., 52, 113 sponge monoliths, 970 spray drying, 553 SSITKA, 496, 497, 538 SSITKA-DRIFTS, 474 standard hydrogen electrode, 218 Standard Oil Company, 796, 808 steady-state isotopic transient kinetic analysis, 497, 538 steam, 805 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index steam cracking, 769, 770, 789 steam-reforming, 450 sticking coefficient, 12 Strbac, S., 224 strong metal-support interaction, 13 ceria, 13 platinum, 13 structure, 436 structured catalytic reactors, 943 structured foam catalysts, 949 styrene, 58, 789 suberic acid, 613 sulfamethoxazole, 260 sulfoxide sulfoxide oxidation, 607 sulfur, 526 oxidation, 526 sum frequency generation spectroscopy, 460 Sumitomo, 805, 806 superoxide radicals, 270 superoxide species O− , 32, 34, 458 superoxo species, 773 supported vanadium oxide catalysts, 429 surface hydroxyl groups, 454 surface over-oxidation, 292 surfactant encapsulated POMs, 616 Suzuki, K., 79 symmetry selection rules, 448 Symyx Tech., 791 synchrotron radiation sources, 512, 515, 517 Synchrotron Storage Ring Advanced Light Source, 524 syngas, 198, 809 synthesis gas, 198 α-terpinene, 590 oxidative dehydrogenation, 590 α-tocopherol, 389 1,1,2-trichloroethane, 103 1,1,2-trichloropropane, 103 1,1,3-trichloropropane, 103 2,3,5-trimethylbenzoquinone, 389 2,3,5-trimethylphenol, 389 2,3,6-trimethylphenol, 389, 391 4,4,6-trichlorophenol, 108 (TBA)4W10 O32 , 595, 599 (TBA)4W10 O32 /SiO2 , 596 (TBA)4 [(PhPO)2 SiW10 O36 ], 605, 608 (TBA)4 [HRu(H2 O)SiW11 O39 ], 594 (TBA)4 [PTi(OH)W11 O39 ], 610 b1675-index 1017 (TBA)4 [γ-H2 SiV2W10 O40 ], 609 (TBA)4 [γ-SiW10 O34 (H2 O)2 ], 602, 603 (TBA)5 [PV2 Mo10 O40 ], 612 (THA)4 [β-Fe4 (H2 O)10 (SbW9 O33 )2 ], 592 (Te2 O) M20 O56 , 798 (TeO)2 M20 O56 , 777 [Ti2 (OH)2As2 W19 O67 (H2 O)]8− , 610 Tamman temperature, 31 Tanaka, H., 207 TAP, 496, 497, 533, 537, 564 Sequential pulse experiments, 536 Tarasevich, M., 221 Taylor, R., 223 TBA8 [{Zn(OH2 )(µ3 -OH)}2 {Zn-OH2 )2 }2 {γHSiW10 O36 }2 ]·9H2 O, 609 Te2 M20 O57 , 785 Te, M., 108 Technobell Limited, 551 temperature programmed desorption (TPD), 467, 497 temperature programmed oxidation (TPO), 427, 496, 497, 529 TPO-Raman, 427 TPR-Raman, 427 temperature programmed reduction (TPR), 427, 496, 497, 529 temperature programmed reduction spectroscopy, 529 temporal analysis of products (TAP) reactors, 203, 497, 533, 558 Teraoka, Y., 38 Terenin, A., 447 terephthalic acid, 173, 176, 258, 259, 268, 807 Amoco process, 177 CATOX, 178 terminal Mo = O, 423 tert-butyl hydroperoxide, 393, 394, 400, 404, 459, 483 tetrachloroethylene, 101, 105, 118 tetragonal tungsten bronze, 778 tetrahydrofuran, 551, 795 tetralin, 19, 599 tetramethyl-2,2,3,3-butane, 16 thermal incineration, 92 thermal oxidation, 55 source of radicals, 55 thermal plasma spraying process, 157 platinum nanoclusters, 157 thiophenes, 459 Thiruvenkatachari, R., 268 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1018 Thomson, W., 944 three-phase contactor, 929 three-way catalysis, 1, 14 support effect, 14 Ti(IV) monosubstituted Keggin-type polyoxometalates, 391 Ti-MCM-41, 394 Tian, T K., 95 Tichenor, B., 54, 56, 57 tight contact, 29 Tikhomirov, K., 37 time-of-flight mass spectrometer, 535 TiO2 -SiO2 mixed oxides, 391 titania, 426 titanium mesoporous materials, 391 TMSPs, 591, 594, 601, 608, 610 TOF, 426, 614 toluene, 5, 17–19, 58, 72, 73, 76, 77, 81, 82, 109–111, 177, 179, 181, 193, 195, 408, 475, 477, 526 ammoxidation, 477 methyl radical, 165 oxidation, 408 phenyl radical, 165 toluic acid, 177 Tolyfluanid, 260 TON, 593, 594, 597, 598, 600 Tong, Y., 241 topotactic mechanism, 555 total organic carbon, 255 Toyoshima, I., 11 transient experiments, 533, 535, 551 transient reactivity, 560 transient regimes, 564 transient state, 550 transient techniques, 532 transition metal oxides, 52 transmission electron microscopy (TEM), 497, 555, 556 transport bed reactor, 793 triazines, 260 trichloroethane, 103 trichloroethylene (TCE), 93, 103, 104, 138 trichloroisocyanuric acid, 404 trichloromethane, 108 trimethyl-2,2,4-pentane, 16 trimethyl-2,3,3-but-1-ene, 18 trimethyl-2,3,4-pentane, 16 trimethyl-2,4,4-pent-1-ene, 18 trimethyl-2,4,4-pent-2-ene, 18 b1675-index Index trimethylhydroquinone TMHQ, 391 trinitrotoluene, 255 triperoxomolybdate Mo(O2 )3 O2− , 403 Tronconi, E., 971, 973, 980 tropospheric ozone, 59 TS-1, 450 TS-1 membrane, 925 Tseng, T K., 100 Tucci, E., 944 tungsten, 66 turbulent fluidized bed, 565, 579 turnover frequency (TOF), 2, 3, 63 turnover number (TON), 592 Twigg, M., 949, 986 two-zone fludized bed, 551 tyrosol, 279 U-Sb-O, 550 ultra-high vacuum, 464, 523 ultrasound, 264 Union Carbide, 791, 808 uranium oxide, 69 Urbano, F., 65 urea, 482 USHY zeolite, 147 UV oxidation, 56 UV-vis spectroscopy, 497, 499, 501, 553 in situ time-resolved UV-vis, 531 in situ UV-vis spectroscopy, 426, 504 UV-vis-DRS, 496, 498 (V1.23 Mo0.66 O5 ), 778 (V,Mo)2 O5 , 778 (VNbMo)5 O14 , 291 (VO)2 P2 O7 , 433, 550, 562, 779, 793, 794 V1.1 Mo0.9 O5 , 778 V1 Sb9 Ox , 298 AlSbO4 , 298 MgSb2 O6 , 298 V1W0.8 Bi1.6 Ox , 299 Bi2WO6 , 299 BiVO4 , 299 V2 MoO8 , V6 Mo4 O25 , 778 V2 O3 , 512, 541, 775 V2 O5 , 33, 404, 437, 456, 541, 578, 775 V2 O5 -MoO3 /TiO2 , 479 V2 O5 -WO3 TiO2 , 479, 508 V2 O5 /TiO2 -SiO2 , 531 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis Index V2 O5 /Al2 O3 , 475 V2 O5 /CeO2 , 426, 464, 468 V2 O5 /Nb2 O5 , 431 V2 O5 /TiO2 , 436, 457, 475, 482, 550 V2 O5 /ZrO2 , 457 V3 O5 , 775 V3 O7 , 775 V4 O7 , 775 V4 O9 , 775 V6 O13 , 775 V(acac)3 , 398 V(III)-acetylacetonate, 397 V(PO3 )3 , 557 V-O-Ce bonds, 427 V-O-Support bond, 426 V-O-V bond, 426, 438, 778 V-Sb-O, 776 V-Sb-W-Mo-Al-O, 797 V-silicalite, 779 V=O bond, 426, 556, 778 vacant polyoxometalates, 588 VAlON, 504, 506 Van Durme, J., 165 vanadia-alumina, 483 vanadia-ceria, 427 vanadia-molybdena, 508 vanadia-pumice catalyst, 401 vanadia-silica, 468 vanadia-titania, 465, 467, 468, 475, 479 vanadium antimonate, 433 vanadium oxide catalysts, 425 vanadium-aluminium oxynitrides, 504 vanadium-phosphorus oxide, 401, 503, 508, 549 vanadyl pyrophosphate, 553, 577, 776, 782, 783, 793, 794, 801 vanadyl species, 457, 499, 502, 541 Vannice, M A., 11 VAPO-5, 779, 780 Vassileva, M., 55 Vernon, P., 202 Vertech, 263 Verykios, X., 203, 206 Veser, G., 207, 209 Vibrio fischeri, 275 Vigier, F., 237 vinyl acetate, 295, 297, 526, 808 vinyl chloride, 101, 103, 809 vinyliden chloride, 103 vitamin B5 , 403 b1675-index 1019 vitamin C, 382, 387 vitamin E, 389 vitamin K1 , 392 vitamin K3 , 392 vitamins, 382 VMo3 O11 , 778 VMo4 O14 , 778 VO2+ , 502, 506, 507, 562 VO2 , 541, 775 VOx /Al2 O3 , 506, 780, 785 VOx /MgO, 780 VOx /SiO2 , 532 VO(H2 PO4 )2 , 500 VO(PO3 )2 , 557 VOC, 51, 478 adsorption/absorption, 53 anthropogenic sources, 51 catalytic oxidation, 52 chlorinated VOCs, 478 combustion, 478 condensation, 53 VOC abatement technologies, 56 Voecks, G., 970 VOHPO4 · 0.5H2 O, 549, 553, 555, 559, 578 VOPO4 , 434, 499, 550, 553, 555, 559 VOPO4 · 2H2 O, 507, 555, 563 VPO catalysts, 503, 508 VPO4 , 557 VSbO4 , 776, 797 VSbWOx , 504 Vu, V., 95, 117 Vycor , 931 VZrON, 504 VZrPON, 506 (183W-NMR), 608 [W10 O32 ]4− , 595 6− {[WZnRuIII (OH)(H2 O)](ZnW9 O34 )2 } , 594 W-peroxo, 608 Wacker-type oxidations, 590, 969, 984 Wang, H., 203 Wang, K., 241 Wang, X., 117 Wang, X Y., 95 Wang, Y., 80, 101, 232 washcoat, 979 waste combustion plant: end-of-pipe pollutants, 135 water oxidation, 613 water splitting, 613 June 23, 2014 17:50 9.75in x 6.5in Advanced Methods and Processes in Oxidation Catalysis 1020 water-gas shift, 199, 450, 463, 470, 473, 540 low temperature water-gas shift, 470 Waters, R., 67 WAXS, 497, 509 Weisheng Pharmaceutical Co, 383 wet impregnation method, 75 polyvinyl pyrolidone, 76 Wetox, 263 WO3 , 456 WO3 /Al2 O3 , 457, 813 Wu, X., 33, 37 Wurzel, T., 206 WVSbAl oxide, 298 WVSbMg oxide, 298 X-ray absorption near edge structure (XANES), 210, 498 X-ray absorption spectroscopy (XAS), 496, 497, 509, 516, 517 X-ray diffraction in situ X-ray diffraction, 555 X-ray photoelectron spectroscopy (XPS), see XPS X-ray scattering, 496, 509, 513 Debye–Scherrer mode, 512 in situ X-ray scattering, 512 XANES, 427, 498, 516, 518 xanthen-9-one, 613 xanthene, 613 Xanthomonas maltophila, 387 Xia, Q., 77 Xia, Y., 80 Xingyi, W., 95 XPS, 496, 497, 509, 523, 528, 555, 559 in situ XPS, 525, 526 b1675-index Index XRD, 497 in situ XRD, 511 XRD/EXAFS, 512 xylenes, 72, 179, 181, 968, 977, 983, 987 Yamamoto, H., 64 Yao, H C., 1, 2, 11 Yazawa, Y., 65 Ye, D.Q., 168 Yeager, E., 223, 235 yeasts, 387 Yeo, Y., 11 Yoshida, K., 38 Yu Yao, Y F., 1, 2, 4, 6, 7, 11, 12 [ZnWM2 (H2 O)2 (ZnW9 O34 )2 ]n− , 609 {[Zr(O2 )(α-GeW11 O39 )]2 }12− , 611 Zagal, J., 235 Zaki, M., 69 Zaklady Azotowe Tarnow (Cyclopol process), 405 zeolite membranes, 931, 933 oxidation of alcohols to ketone, 933 styrene oxidation, 933 Zeolite-encapsulated Co(II)saloph complexes, 398 Zhang, X., 137 Zi¸eba, A., 55 Zimpro, 263, 272 zirconia, 426 ZnCr2 O4 , 456 ZnFe2 O4 , 455, 477 ZnO, 463 Zurilla, R., 223 Zwerkle, D., 953 Zygomycetes, 388 ... Congress Cataloging -in- Publication Data Duprez, Daniel, 1945– Handbook of advanced methods and processes in oxidation catalysis : from laboratory to industry / Daniel Duprez, University of Poitiers,... 9.7 5in x 6. 5in This page intentionally left blank icmp12-master HANDBOOK OF ADVANCED METHODS AND PROCESSES IN OXIDATION CATA LYSIS From Laboratory to Industry Editors Daniel Duprez University of. .. Advanced Methods and Processes in Oxidation Catalysis From Laboratory to Industry edited by Daniel Duprez (University of Poitiers, France) & Fabrizio Cavani (Universit`a di Bologna, Italy) Since

Ngày đăng: 05/01/2019, 21:39

TỪ KHÓA LIÊN QUAN

w