THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 106 |
Dung lượng | 1,89 MB |
Nội dung
Ngày đăng: 02/01/2019, 10:50
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||
---|---|---|---|---|---|---|---|---|
[5]. Ankerst M., Breunig M. M., Kriegel H.-P., Sander J. (1999). “OPTICS:Ordering Points To Identify the Clustering Structure”, Proc. ACM SIGMOD, Philadelphia, PA, pp. 49-60 | Sách, tạp chí |
|
||||||
[1]. Achtert, E., Kriegel, H.-P. and Zimek, A. (2008). ELKI: A Software System for Evaluation of Subspace Clustering Algorithms. Proceedings of the 20th international conference on Scientific and Statistical Database Management (SSDBM 08). 5069. pp . 580-585 | Khác | |||||||
[2]. Aggarwal Charu C., Wolf Joel L., Yu Philip S., Cecilia Procopiuc, and Jong Soo Park. (1999). Fast algorithms for projected clustering. In Proceedings of the 1999 ACM SIGMOD international conference on Management of data (SIGMOD '99). ACM, New York, NY, USA, pp. 61-72 | Khác | |||||||
[3]. Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp. 487-499 | Khác | |||||||
[4]. Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp. 94–105 | Khác | |||||||
[6]. Assent, I., Krieger, R., Müller, E., and Seidl, T. (2007a). DUSC:Dimensionality unbiased subspace clustering. In Proceedings of the 7 th International Conference on Data Mining (ICDM), pp. 409-414 | Khác | |||||||
[7]. Assent, I., Krieger, R., Müller, E., and Seidl, T. (2007b). VISA: Visual subspace clustering analysis. ACM SIGKDD Explorations Newsletter, Volume 9, Issue 2, pp. 5–12 | Khác | |||||||
[8]. Bache K. and Lichman M. UCI machine learning repository.http://arch i ve.ics.u c i.e d u / m l . Accessed 08 Mar-2018 | Khác | |||||||
[9]. Cheng, C.H., Fu, A.W.-C., and Zhang, Y. (1999). Entropy-Based subspace clustering for mining numerical data. In Proceedings of the 5 th ACM International Conference on Knowledge Discovery and Data Mining (KDD'99), pp. 84–93 | Khác | |||||||
[10]. Cheng, H., Hua, K.A., Vu, K. (2008). Constrained locally weighted clustering.In Proceedings of the VLDB Endowment, Volume 1, Issue 1, pp. 90–101 | Khác | |||||||
[11]. Domeniconi, C., Gunopulos, D., Ma, S., Papadopoulos, D., Al-Razgan, M., Yan, B. (2006). Locally adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery, 14, 63-97 | Khác | |||||||
[12]. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2 nd ACM International Conference on Knowledge Discovery and Data Mining (KDD), pp. 226-231 | Khác | |||||||
[13]. Fromont É., Prado A., Robardet C. (2009). Constraint-based subspace clustering. In Proceedings of the 9 th SIAM international conference on data mining (SDM), pp. 26–37 | Khác | |||||||
[14]. Hinneburg A., Keim D.A. (1998). An Efficient Approach to Clustering in Large Multimedia Databases with Noise. Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, (KDD), pp. 58-65 | Khác | |||||||
[15]. Jiawei H., Micheline K., and Jian P. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA | Khác | |||||||
[16]. Kailing, K., Kriegel, H.-P., and Krửger, P. (2004). Density-Connected subspace clustering for high-dimensional data. In Proceedings of the 4 th SIAM International Conference on Data Mining (SDM), pp. 16-30 | Khác | |||||||
[17]. Kaur, A., Datta, A.(2014). Subscale: fast and scalable subspace clustering for high dimensional data. In: 2014 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 621–628 | Khác | |||||||
[18]. Kaur, A., Datta, A.(2015). A novel algorithm for fast and scalable subspace clustering of high-dimensional data. J. Big Data Volume 2, Number 1, pp. 17 | Khác | |||||||
[19]. Kriegel, H.-P., Krửger, P., and Zimek, A. (2009). Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, Volume 3, Issue 1, Article 1, pp. 1-58 | Khác | |||||||
[20]. Liu, G., Li, J., Sim, K., and Wong, L. (2007). Distance based subspace clustering with flexible dimension partitioning. In Proceedings of the 23 th International Conference on Data Engineering (ICDE), pp. 1250-1254 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN