1. Trang chủ
  2. » Luận Văn - Báo Cáo

ĐA THỨC MA TRẬN_SỰ PHÂN BỐ GIÁ TRỊ RIÊNG, CÁC ĐỊNH LÝ BIỂU DIỄN DƯƠNG VÀ MỘT SỐ VẤN ĐỀ LIÊN QUAN.pdf

90 128 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 90
Dung lượng 628,51 KB

Nội dung

èấ ặ è ấổặ ầ ẻ ầè Ç ÉÍ ỈÀ Ỉ Å ÌÊ Ỉ Ë ÈÀ Ỉ èấỹ ỹặ ộặ ặ ẻ è ậ ẻ ặ ỗ ổặ ẫ ặ ặ ặ èốặ ậợ èầ ặ ỡặ ỹặ ặ ắẳẵ èấ ặ è ấổặ ầ ẻ ÇÌ Ç ÉÍ ỈÀ Ỉ Å ÌÊ Ỉ Ë ÈÀ Ỉ Á ÌÊü üỈÀ Ä ÁêÍ ÁéỈ Ỉ Ỵ Å è ậ ẻ ặ ỗ ổặ ẫ ặ íũề ề ề ậ ỉ íụỉ ì ì ẳẵẳ ẩ ề ữề ẵ ẩ ậ èậ ẩ ẹ è ụề ậ ề èệ ẩ ề ữề ắ ề ề ÷Ị ¿ Ä Ø Ì˺ À Å Ị ÌĨ Ị Ỵ ÷Ị ÌĨ Ị È Ì˺ Äò ÌƯ Ị ẻ ữề ề é ẹ ể è ể ề ẩ ũề ỡặ ỹặ ặ ắẳẵ ề ề ữ ẻ ữỉ ặ ẹ ẹ Ó Ò ÄÙ Ò Ò Ò Ý Ó Ò Ø ề ỉ èệ ề ẫí ặ ề ì ề ề Ì˺ Äò Ị ÌỊ Ú Ì˺ Ị ÌỨỊ À º Ì Ü Ị Đ Ĩ Ị Ý Ð Ị ØỊ Ị òỊ Ù Ø º ÕÙ ØƯĨỊ ÄÙ Ị Ị Ð ØỨỊ Ø ¸ Ị Ø ĨƠ Ơ× Ị Ú Ø Ị Ị ØƯ º Ìź Ì Ơ Ø Ì˺ Äò Ị Ị ÌỊ Ị Ì Ì À øỊ Ä Đ Ị ÄÙ Ị Ị Ị Ý Ĩ Ị Ø Ị ØƯĨỊ ÕÙ ØỊ Ø Ơ Ú Ị òỊ Ù Ø Ã Ĩ ÌĨ Ị¸ èệ ề ẫí ặ ề ì ề ề è ụề ×ú Äò Ị ÌỊ Ú Ì ơỊ ×ú Ị ÌỨỊ À º ÌƯ Ø òỊ¸ Ø Ü Ị Ý Ø Ð Ị Ị × Ù × ơỊ Ì ơỊ ×ú Äò Ị ÌỊ º Ì Ý û Ĩ Ø Ò ØøÒ Ú Ò ÒØ Ø Ò Ò Ù Ð Đ Ị òỊ Ùº Ì Ý Ø Ĩ Ĩ Ø Đ Ø Đ ØƯ Ị Ø Ơ Ú Ị òỊ ẹ ỉ ề ỉ ữề ề ề ề Ư Ø Ị òĐ Ø º Ì Ý ÐÙ Ị Ị Ú òỊ¸ Ơ Ø Ị Ø ơỊ ØƯĨỊ Ị òỊ Ù Ĩ º Ø Ơ¸ Ð Đ Ú ÷ Ú Ø Ý Ð óÙ Đ Ý Đ Ị Ú Ị Ơ Ú Ø º Ì ÜỊ ÝØ Ð Ị Ị × Ù × ơỊ Ì ơỊ ×ú Ị ÌỨỊ À º Ì Ý ÐÙ Ị Ị ũềá ự éữá ễ ỉ ể ì ỉ ÕÙ ØỊ Ị òỊ Ù Ø º Å Ø Ý Ị ØƯĨỊ Ị ¸ Ị Ị Ø Ý Ú Ị Ø Ị ÜÙÝòỊ ØƯ Ĩ Ĩ Ú Ø º Ø Ĩ Ĩ Ø Ý Ø Ơ Ø ØƯ Ị Ø Ị Ư Ø Ị óÙ Úó Ĩ Ð Ị Ù × Ị º Ì Ü Ị Đ Ị Ì ơỊ ×ú À Å Ị ÌĨ Ịº Đ Ị Ị Úø Ị ù Úó Ú Ị ó Ð òỊ ÕÙ Ị ơỊ Ị Ð õỊ Ị Ú Ị Ù Ø Ĩ ÐÙ Ị Ư Ø ØĨ Ị Đ Đ Ịº Ù Ì ÜỊ Ð Đ Ị Ị Ø ề ụề ề ẹ ữ èệ ề ẫí ặ ềá ẩ ề ểỉ ểì ỉ ể ú ữề ỉ Ø Ị Ø Ø Ø Ơ Ø ØƯ Ị ữỉá ỉ ĩề é ẹ ề ụề ề ề ÷Đ Ã Ĩ ÌĨ Ị Ị Ø Ý Ĩ¸ Ĩ ØƯĨỊ à Ĩ Ø Ĩ Ư Đ Ø Đ ỉệ ề ỉ ễ ỉ ề ỉ ữềá ẹ Ư Ø ÙÝòỊ Ị ÷Ơº óÙ Ị Ý Ờ Ị Ð Ơ Ø ØƯ ưỊ Ị Ø Ịº Ì ÜỊ Ð Đ Ị ơỊ Ị Đ ÷Ù ÌƯ Ị Ĩ Ị Ë Ơ Đ À Ì Ý¸ È Ị Ì Ị Ø Ĩ óÙ ÷Ị Ø Ø Ị Ø Ĩ Ø º Ì Ị Ü Ị Ð Đ Ị ơỊ Ị Ị ÷Đ Ã Ĩ Ì Ị òỊ ề ề ề ữễ é ề ề ề ũềá ì ề ữ ỉ Ø Ị Ø Ơ ØỨỊ Ị òỊ Ù Ø ÌƯ Ị ÉÙÝ Ỉ Ịº Ì Ü Ị Đ Ị Ị Ị òỊ Ù × Ị Ø ÌƯ Ị Ú ũềá ì ễ ỉ ỉệểề ế ỉệứề ỉ ễ ề Ì ÉÙÝ Ỉ òỊ Ùº Ị ÐÙ Ị Ị ÜỊ Ð Ị ơỊ øỊ òỊ Ị Ị Ĩ º Ỉ Ị Ị Ø Ị ÐÙ Ị Ị ¸ Ị Ú òỊ Ø º À Ð Ø Ị Ø Ị Ú Ị Ø ÝòỊ Ø Đ Ø Ơ ề ũề ĩ ề ữỉá ỉ ĩ Ị Ð Ị × Ù × ơỊ Ị Đđ Ø Ị ÝòÙ ĐøỊ º Đ Ị × Ý × Ị Ĩ Ị Ị ØøỊ ÝòÙ Ú Ị Đđ Ị Ĩ ĨỊº ÌøỊ Ø Ị Ĩ Ð Đđ ÐÙ Ị Đ ØƯ Ø Đ ĨỊº Ù Ị ¸ Ø Ü Ị Ị ØøỊ Đ Đ Ị Ị Ú ĨỊ ơỊ òỊ øỊ ÝòỊ Đº ÷Ø ơỊ Ị Ú ĨỊ Ø Đ¸ Ơ ¸ Ị Ú òỊ Đº Ị ÝòÙ ĐøỊ º øỊ ÐÙ Ị Ð Ị Å Ð Ị Đ ữ  ẵ ẵ ỉ ì ụỉ ế ề ẵẵ ậ ễ ẵắ ề ỉể ề ỉ ẵắẵ ẵắắ ẵ ữẹ ẵ ỉì ỉể ề Ø ÀÐ ØĨ Ị Ø Ù ÀÐ Ø Ị Ð õỊ Ị Ĩ Ø ½ ½ º º º º º º º º º º º º º ½ ØĨ Ị Đ Đ Ị º º º º º º º º º º º º º ắ ề ể ỉ ắ ẵắ ØĨ Ị Đ Đ Ị º º º º º º º º º º º º º º º º º º º º º º º º º ắ ẵ èựề ĩ ì ỉ ề Ĩ Ị º º º º º º º º º º º º º º º º º º º º º º º º ỉ ề é ẵắ ệỉ ề º º º º º º º º º õÒ Ú Ù Ừ Ú ơỊ º º º º º º º º º º º º º º º º ØĨ Ị Ø ÀøỊ Ø Đ ØƯ Ị º º º º º º º º º º º º º º º º º º ¾ Ø ¿¾ Đ ØƯ Ị Ú Ø ÙỊ Ị Ø Ị Ù Ị Đ ØƯ Ị º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ Ë Ơ Ị ØƯ Ư òỊ Ø Đ ØƯ Ị ¾º½ Ị Đ ØƯ Ị Ị Ð ¾º¾ Ù í ể ắ ẹ ỉ ệỉ ẹ ỉ ì ½ Ị Ð Ø ½º¿º½ ½º ½º Ị ½¾ Ị é ậể ì ề ề ề ìỉệÔểẹạ ỉ í º º º º º º º º º º º º º º º º º Đ ØƯ Ị º º º º º º º º º º º º º º º º Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¿ ¿ ¿ ¿ ¿ Ị Ð õỊ Ị Ĩ Ø Đ ØƯ Ị ¿º½ Ị Đ ØƯ Ị Ị é ẩỉ ề ệạẻ ì é ì º º º º º º º º º º º º º º ¿º¾ Ị Đ ØƯ Ị Ị Ð ¿º¿ Ị Đ ØƯ Ị Ị Ð À Ị éẹ ề ềìểềạẩể º º º º º º º º º º º ¼ º º º º º º º º º º º º º º º º º º º º ¿ ¿º¿º½ Ị Đ ØƯ Ị Ị Ð ề éẹ ề ỉệũề nạ ắ ề ẹ ỉệ Ị Ị Ð À Ị ÐĐ Ị ØƯòỊ ¿º¿º¿ Ị øỊ Å Ø Ø Ù Ø ØĨ Ị ØøĐ õỊ Ị Ĩ Ø Đ ØƯ Ị Ị ØƯòỊ Đ Ø ÷Ị Ð ĨĐƠ Ø º º º º º º º º º º º º º º º º º º º º º Ị Đ ề ỉệứề ỉ ể ữề é ểẹễ ỉ ốè ặ è é ữ ỉ ẹ º º º º º º Ð òỊ ÕÙ Ị ơỊ ÄÙ Ị Ị ½ Ị Đ R R+ C N K Rn Cn Mt (R) Mt (C) St (R) X Xα C[z] R[X] R(X) Mt (R[X]) St (R[X]) AT A A≻0 ||A|| A2 ÌƯ Ị × Ø è ễ ễ ì ỉ èệ ữ ề ì Ơ Ị Đ Ì Ơ × Ø Ị òỊ R à à Ỵ Ỵ Ỵ Ĩ C Ị ỊØ n óÙ Ị ỊƠ n óÙ Ị Đ ØƯ Ị ÚÙ Ị Ơ t Ú Ơ Ị Ø ØƯòỊ R Ị Đ ØƯ Ị ÚÙ Ị Ơ t Ú Ơ Ị Ø ØƯòỊ C Ị Đ ØƯ Ị n ơỊ (X1 , , Xn ) X1α1 Xnαn , α Ü Ị Ơ t ØƯĨỊ Mt (R) = (α1 , , αn ) ∈ Nn ẻ ề ỉ ẹ ỉ ụề z ữì Ơ Ỵ Ị Ø n ơỊ X = (X1 , , Xn ) ữì ỉ èệ ề ỉ Ị Ú Ị Ø R[X] Ỵ Ị Đ ØƯ Ị Ơ t Ú Ơ Ị Ø ØƯòỊ R[X] Ỵ Ị Đ ØƯ Ị Ü Ị Ơ t ØƯĨỊ Mt (R[X]) Å ØƯ Ị ÙÝưỊ Ú Đ ØƯ Ò A ∈ Mt (R[X]) Å ØÖ Ò A Ò Ü Ị Ị Å ØƯ Ị A Ü Ị Ị Ù Ị ØĨ Ị Ø Đ ØƯ Ị A Ì Ô Ô Ø Ø Ø Ò øÒ Ô Ò Ù Ị Ơ Ị Ø ØƯĨỊ Đ Ø Ú Ị Ĩ Ĩ ỊA Å Ù Ø n à ÷Ù K[X] := K[X1 , · · · , Xn ] Ð Ú Ị Kº à ÷Ù Mt (K), Mt (K[X]) ÐỊ Ð Ø Ð Ú Ị Đ ØƯ ØƯĨỊ K Ú K[X]º Å Đ ØƯ Ị A ∈ Mt (K[X]) Ð Ø Đ ØƯ Ị¸ Úø Ị Ø ừề ề ẹ ữ ì ỉệũề Mt (K) ề × Ù ơỊ X1 , · · · , Xn ữ ì ỉệểề ề ề ễ t Ơ Ị Ø Đ Ø Đ ØƯ Ị Ø Ĩ Đ Ø Ø Ø n Ị X1 , · · · , Xn Ú d Aα X α , A= |α|=0 ØƯĨỊ ¸ α = (α1 , · · · , αn ) ∈ Nn ¸ |α| := α1 + · · · + αn ¸ X α := X1α1 · · · Xnαn ¸ Aα ∈ Mt (K)¸ dÐ Ĩ Ị Ø Ị Ø ØƯĨỊ Aº Ĩ ¸ Ø Ị Ị Ø ØƯĨỊ ØĨ Ị ÄÙ Ị Ị¸ Đ Đ ØƯ Ị ØƯĨỊ Mt (K[X]) Ð Đ Ø Ø Đ ØƯ Ịº Ø Ơ ểề ữỉ ề ẵ ề ề ũề ựề Ị Ị Ð Ø Đ ØƯ Ị¸ Ú Ú ẹ ỉệ ề ì ụềá ề ỉ ế ề ỉ Đ ơỊ ØĨ Ị Ị Ùº Ĩ ¸ ỉ ề ỉ ữề ề ỉ ỉ ØỊ Ý ØĨ Ị Ð òỊ ÕÙ Ị ØƯĨỊ Ơ Ị Ư òỊ × Ùº Ø Đ ØƯ Ị Đ Ø ơỊ ÌƯĨỊ Ơ Ị Ị Ý Ị Ø ơỊ¸ Ø Ð Ü Ø Ø ØỊ Ý Đ Ø × Ú Ị ó Ð òỊ ÕÙ Ị ơỊ Đ ØƯ Ị Ị Ø Đ ØƯ Ị Đ Ø P (z) = Ad z d + · · · + A1 z + A0 , ØƯĨỊ ¸z Ð ơỊ × Ú Ai ∈ Mt (C), ∀i = 0, , dº Đ Ư Ị Ø Ị òỊ Ø ØƯ Ị λIt − A It Ð Đ ØƯ Ị Ị Ú ØƯĨỊ Mt (C)º Ð Đ Ø Ỉ Ad = 0¸ Ø ø P (z) Ð Đ Ø Ø Đ ØƯ Ị ĐĨỊ º Ỉ Ø Ị Ø Đ Ø Ú Ø Ð Đ Ø ØƯ Ư òỊ P (z)¸ Ú Ú ØƯ Ư òỊ λº Ø Ø Đ ØƯ Ị Đ Ø ơỊ Ð × Đ Ø Đ ØƯ Ị A ∈ Mt (C)¸ ØƯĨỊ Đ ØƯ Ị dº à Ad = It ¸ P (z) Ị x ∈ Ct Ú λ ∈ C × Ĩ Ĩ P (λ)x = 0¸ Ø ø λ x Ð Đ Ø ỉ ệ ũề P (z) ỉ ặ íá Đ ØƯ Ư òỊ P (z) Ð Đ Ø Ị ÷Ù Ì Ơ Ơ ØƯ Ư òỊ P (z) Ø ẹ ỉệ ề P (z) ẵ ữẹ ỉ (P (z)) Ú Ị Ị ØƯ Ị Ø(P (z))º Ð Ơ Ø òĐ Ư Ị ØƯĨỊ A ∈ Mt (C)¸ Ø ø Đ ØƯ ØƯ Ị Aº Ĩ Ø ưỊ ØƯ Ư òỊ Đ Ø Đ ØƯ ØƯ Ị Ơ P (z) = zIt − A¸ Ø ØƯ Ị Đ ØƯ Ị Ư òỊ Ø Đ ØƯ Ị P (z) Ð Đ Ø ØƯ Ư òỊ Đ ØƯ Ư òỊ Ø Đ ØƯ Ị Ð Đ Ø Ị ÷Đ Đ Ư Ị Ịº ØĨ Ị ØƯ Ư òỊ Ø ´ÈĨÐÝỊĨĐ Ð ỊÚ ÐÙ ÈƯĨ Ð Đ ¹ È Èµ Ð ØøĐ Đ Ø t Ị x ∈ C × Ĩ Ĩ P (λ)x = 0º ÌƯĨỊ ØƯ Ị Ơd=1 ØƯ Ư òỊ λ Ú Đ Ø Ú Ø Ị Ø ØĨ Ị ØƯ Ư òỊ Ø Ị ÕÙ Ø Ax = λBx À ỊỊ ¸ Ị A1 = It Ø ø ØĨ Ị Ị Ø ØƯ Ư òỊ Ù Ị Ax = λx ØĨ Ị ØƯ Ư òỊ Ơ d = 2º ´ÉÙ Ư Ø ỊÚ ÐÙ ẩệể é ẹ ẫ ẩà ỉ ề ề ØƯ Ị Ø Đ ØƯ Ị Đ Ø ơỊ Ị óÙ Ị Ị ØƯĨỊ ÐúỊ Ú Ị Ơ Ị ỉệứề ễ ềá é ỉ íụỉ ữ ỉ ề ¸ Ø Ù Ø Ï Ị Ư¹ÀĨƠ ¸ Ú é ỉ íụỉ ệề ỉự ì ØĐ ÕÙ Ị ØƯ Ị Ø Đ ØƯ Ị Ð Ư Ư Ị Ị Ị Ø Ð ÷Ù Úó × ØÙÝơỊ ØùỊ Ú Ð Ø ÙÝ Đ ØƯ Ị ó Ơ Úó Ị Ị Ị óÙº À Ị ØỊ Ù Ø òỊ Ú Ý Ị Ø Úó Ø ẹ ỉệ ề é ệ ị ệá ề ề ĨÐÐ Ư ½ ℄ Ị Đ ½ Ú Ä Ị ìỉ ệ ắ ề ẹ ẵ ú ễ Ø ØƯ ưỊ Ð Ø ÙÝ Ø Đ ØƯ Ị Ø Ị ÕÙ Ð Ø ÙÝ ÷ ỨỊ º Ị Ø Ø Ơ Ø Đ ØƯ Ị Ị òỊ Ù ÷ Ơ Ị ØỊ Ú Ơ Ị ´ Ð ề ề ẵà ữì ề áỉ é ữ ề d Ai i=0 i d dt u(t) = Ỵ ÷ ØøĐ Ị ÷Đ Ĩ ÷ Ị u(t) = x0 eλ0 t ¸ Ú x0 , λ0 ØĨ Ị ØƯ Ư òỊ ¹ Ú Ø Ư òỊ Ø Đ ØƯ Ịº Ð ƠÚ t¸ ØƯ Ø ơƠ Ị ơỊ òỊ Ị ¸ ØĨ Ị ØƯ Ư òỊ É È Ị óÙ Ị Ị Ú Ĩ Ĩ Ú Ø Ù Øº Å Ø Ø Ị ÕÙ Ị Úó Ị Ị Ị Ị É È ØỊ Ý ØƯĨỊ Ù Ị × ể ệ ề ìỉ ệ ấể ẹ ề ẵ ẹ ệé ề ềệể è ìì ệ ẵ ề ậ Ư Ị Ị Ø Ù Ø ØĨ Ị ØĨ Ị É Èº Ú ØĨ Ị È È¸ Ú Ị òỊ Ù Úó Ị Ĩ ØƯ Ư òỊ Ø Đ ØƯ Ị Ø Ð Ơ Ø Ĩ Ù ề ữ ì ỉ ẹ ỉệ ề ể ề Ị Ị Ị ØỊ À Đ Ú Ì ×× ÙƯ ắắ èí ề ũềá ắ ữễ ề ỉệứề ỉệũề ỉ Ị Ị  Ỉ 11  B = −9 13 Ú Ý¸ à     X = 11λ0 + 72 λ1 + 3λ2 + 2λ3 = −9λ0 − 29 λ1 − λ2 Y    Z = 13λ0 + 7λ1 + λ2 + λ3 ÷Ù R[Y ] := R[Y1 , · · · , Ym ]¸ Ú Ü Ø ϕ : R[Y ] → R[X], ề ỉ ẵắà ỷ ệ ệ ề I := à Ư(ϕ) ×Ị   −1 0 1 −9 Ò ÙÚ Ò Yi −→ λi (X), ∀i = 1, · · · , m m i=1 Yi − ∈ à Ö(ϕ)º Ĩ ¸ Ị Ø Ø Ø r1 (Y ), · · · , rs (Y ) ∈ R[Y ]¸ × ò Ị I := à Ư(ϕ) = r1 (Y ), , rs (Y ) , m ØƯĨỊ i=1 Yi − Ð Đ Ø ØƯĨỊ ri Ị Ĩ Ò ÙÚ Ò Mϕ : Mt (R[Y ]) −→ Mt (R[X]), ú ẵ ệ ề ề ẹìề Ñ Ø G = (gij (Y )) −→ (ϕ(gij (Y ))) Ị Ù Mϕ Ð ØĨ Ị Ị ¸ Ú I := à Ö(Mϕ ) = r1 (Y )It , , rs (Y )It , Ú It Ð Đ ØƯ Ị Ị ĐỊ º Ỵ Ị Ú ØƯĨỊ Mt (R[Y ])º Đ g(X) = |α|≤d aα X α ∈ R[X]¸ ÷Ù m T α g(Y ) := |α|≤d aα (Y · B ) Ø Ø ÙÒ Ò Ø dº À Ị Ị õØ ÝgÐ óÙ Ị Ý Ĩ Ø Ĩ Mϕ Ị Ð Đ Ø ØĨ Ị Ùº Yi i=1 d|| R[Y ] ẵ (g(Y )) = g(X) ËÙÝ Ư ϕ Ð ØĨ Ị Ùº Å Ø Ĩ ¸Ú ¸ G = (gij (Y )) ∈ à Ö(Mϕ ) Ị Ú û Ị gij ∈ à Ư(ϕ) Ú Ñ i, j = 1, · · · , t Ø Ñ i, j = 1, · · · , tº s aijk (Y )rk (Y ), ØƯĨỊ gij (Y ) = k=1 ặ íá G ỉ Ị aijk (Y ) ∈ R[Y ] × Ù s G= s rk A k = (rk It )Ak , k=1 k=1 ݸ Ak = (aijk (Y )) ∈ Mt (R[Y ]) Ú Đ ó Ị ĐỊ º r1 I t , · · · , rs I t Ó F = (fij ) ∈ St (R[X]) Ð Đ Ø Ø Đ fij Ü Ị St (R[Y ])¸ ØƯĨỊ k = 1, · · · , sº óÙ Ị Ý û Ư Ư Ị G ∈ Đ ØƯ Ò d > 0º à ÷Ù F := (fij ) ẵ àá é ẹ ỉ ỉ ỉ ề ề Ø dº ØƯ Ư òỊ Fº Ì Ĩ ¸ Ì ểệ ẹ ẵá (F) é ẹ ỉ ẹ ì (F) Ð Đ Ø Đ Ð òỊ Ø ØƯòỊ fij (X)¸ i, j = 1, · · · , tº Ì Ð ¸ Ø Ị Ø Đ Ø Đ Ð òỊ Ø Λ : Rt×t → R × Ĩ Ĩ λ(F) = Λ(fij (X))º à ÷Ù λ(F)(Y ) := Λ(fij (Y ))á ỉ ì é ẹ ỉ ẹ ỉệ ệ ũề Ø Đ ØƯ Ị Fº s à ÷Ù r(Y ) := ú ắ ri2 (Y ) ẻ ữ ể ỉệũềá Ị Ø ó × Ùº i=1 Ø Đ ØƯ Ị d > 0º Ó λ(F) Ð Ó F = (fij ) ∈ St (R[X]) Ð Ñ Ø Ñ Ø Ñ ØƯ Ư òỊ Fº Ỉ λ(F) > ØƯòỊ P ¸ Ø ø Ø Ị Ø Đ Ø × Ø Ị òỊ Ð Ịc × Ĩ Ĩ λ(F) + cr > ØƯòỊ m¹ Ị øỊ Ø òÙ Ù Ị ∆m º Ê Ị¸ c > −m1 /m2 ¸ ØƯĨỊ m1 Ð ØƯ Ị Ị Ø λ(F) ØƯòỊ ∆m Ú m2 Ð ØƯ Ị Ị Ø r ØƯòỊ Ø Ơ ĨĐƠ Ø ∆m ∩ {y ∈ Rm |λ(F)(y) ≤ 0}º Ị ĐỊ º Ị ĐỊ Ú Ĩ ¿ ¸ Ä ÑÑ ℄º Ø U = ∆m ∩ {y ∈ Rm |λ(F)(y) ≤ 0}º Ì Ĩ ¸ Ë Ø ĨỊ ¿℄¸ r > ØƯòỊ ͺ Ĩ U ĨĐƠ Ø ỊòỊ Ø Ị Ø ØƯ Ị Ị Ø m2 r ØƯòỊ U º À Ị Ị ¸ m2 > 0º Å Ø ¸ Ĩ λ(F) Ð òỊ Ø ØƯòỊ Ø Ơ ĨĐƠ Ø ∆m ỊòỊ Ø Ị Ø ØƯ Ị Ị ỉ m1 ặ íá ỉệũề U ề Ø λ(F) + cr ≥ m1 + cm2 > 0; ØƯòỊ ∆m \ U ¸ Ị Ø λ(F) + cr ≥ λ(F) > Ơ Ị ó Ị ݸ Ø Ị ó ¿º¿º¿º Ị ÕÙ × Ùº Ĩ F = (fij ) ∈ St (R[X]) Ð Ñ Ø F := (fij ) ∈ St (R[Y ])º × F ≻ ØƯòỊ P º à Ĩ F + crIt ≻ ØƯòỊ m¹ Ị øỊ Ø òÙ Ù Ị ∆m º Ø Đ ØƯ Ị d > 0º à ÷Ù Ø Ị Ø Đ Ø × Ø Ị òỊ Ð Ịc× Ĩ Ị ĐỊ º ĨFÐ Ü Ị Ị ØƯòỊ P ¸ ỊòỊ Đ ØƯ Ư òỊ Ị λk (F), k = 1, · · · , t¸ é ề ỉệũề P è ể ú ắá ẹ k ỉ ề ỉ ẹ ỉ ì ỉ Ị òỊ Ð Ị ck × Ĩ Ĩ λk (F) + ck r Ð Ị ØƯòỊ ∆m º Ø c = max ck º Ã Ò λk (F) + cr Ð k=1,··· ,t ØƯ Ư òỊ ØƯòỊ ∆m Ú Đ k = 1, · · · , tº Ư Ò ¸ λk (F)¸ k = 1, · · · , t¸ Ð Ø Đ ØƯ Ị Fº Ĩ ¸ ØƯ Ư òỊ Ø Đ ØƯ Ị F + crIt Ð λk (F) + cr ¸ k = 1, · · · , tº óÙ Ị Ý Ị Ø Ư Ị F + crIt Ð Ü Ị Ị ØƯòỊ ∆m º ó Ị ĐỊ º Ư Ị F := F + crIt Ị Ơ m Ị Ø i=1 Fº Ú Yi ¸ F Ø ư¸ Ị Ị Ø Ị Ị Ø Ị Ð Đ Ø Đ Ø õỊ F Ị Ø Ø ÙỊ Ị غ ÌÙÝ Ị òỊ¸ Ø ÙỊ Đ ØƯ Ị Ø ÙỊ Ị Ø Ị × Ù Bβ Y β , F= Ø Bβ ∈ St (R), |β|≤d m Ø ø Ø ÙÒ Ò Ø Ò Yi Ð i=1 m h β F = i=1 |β|≤d h Ã Ü Ò F Ð Đ Ø Ø Ị ØƯòỊ ∆m º Ý Ư ØƯĨỊ Đ ØƯ Ị Ø ÙỊ Ị ØƯòỊ P º à ¸Ú Ø dº À Ị Ị Ị Ø Ø ư× Ị Ị Đ ØƯ Ị Ị Ð ℄ Ị Đ ØƯ Ị Ị Ð õỊ Ị Ð ắ ẵ Yi )d|| B Y ( h h ¸ Mϕ (F ) = F¸ Ú F Ð õỊ Ị È ÐÝ Ị À Ị ÐĐ Ị ề ì h ể P á M r ¸ F¸ F¸ F Ị ØƯòỊ¸ ØƯĨỊ ¸FÐ Ü Ị Ị h h × Ư Ị F λIt ØƯòỊ ∆m Ú λ > Ị Ĩ º Ø d := (F) Ú L := L(F )º d(d − 1) L − d¸ F Ø N> õỊ Ị λ F= |α|=N +d Cα λα1 · · ã mm , ẳ ẵ ỉệểề áẹ C St (R) Ð Ü Ị Đ Ị º ÌƯ Ë Ù ¸ Ị Ø Ø òỊ¸ Ơ Ị Ị Ø Ò º Ô h Ò d = deg(F )º m h ề ể M h ề é ẵ ẵắ ể F ỉệểề M (F ) = F Ú ϕ = 1º Yi i=1 Ì Ị Ø ĨỊ ề ề ậ ẹÔ ề ể ữ ế ỉ ề ỉ ỉ ữề é ểẹễ ỉ Ị Đ ØƯ Ị Ĩ Ị Ð õỊ h Ĩ P ¸ F¸ F¸ F Ĩ ØƯòỊ¸ Ú F Ü Ị Ị ØƯòỊ P º h h λIt ØƯòỊ ∆m Ú λ > Ị Ĩ º Ø d := (F) Ú L := L(F )º à ì F d(d 1) L dá F Ø õỊ N> Ị λ F= δi ∈{0,1} Cδ λδ11 · · · λδmm , ØƯĨỊ Đ Cδ ∈ St (R[X]) Ð Đ Ø Ø Ị AT Aá A Mt (R[X])á ẹ C ẵ µ Ù Ò Ò Ò Ò ÕÙ N + dº Ø Đ ØƯ Ị ¿º¿º¿ Å Ø Ø Ù Ø ØĨ Ị ØøĐ õỊ Ị Ĩ Ị ØƯòỊ Đ Ø ÷Ị Ð ĨĐƠ Ø ĨĐ Ø ÷Ị Ð ĨĐƠ Ø P Ú Ơ Ị ØƯĨỊ ØÙÝơỊ ØùỊ λ1 , · · · , λm ∈ R[X]¸ Ị Ị Ư Ị ¸ Ị Ø Đ ØƯ Ị Ị Ị Ị Ø P = {x ∈ Rn |λi (x) ≥ 0, i = 1, · · · , m} ĨĐ Ø Ø Đ ØƯ Ị F = (fij ) ∈ St (R[X]) d>0Ú Ü Ị Ị ØƯòỊ P º Ì ể ề ẹề ề é ắ ẵ ề Ø Ư ØøĐ õỊ ĨFỊ × Ù ẵà èứẹ ì ỉ ề ũề ci R ì ể ể ễ ề ỉệứề ỉíụề ỉựề ắà ữễ m i=1 ci i (X) = ẻ ữ ỉứẹ ci Ị ØỊ ØÙÝơỊ ØùỊ m Xi = bij λi (X), j=1 ØøĐ Đ ØƯ Ị B = (bij )i=1,··· ,n;j=1,··· ,m º ½ i = 1, · · ã , n, ề ụề ẹ ỉ ữ ậ ề ẵ ỉứẹ fij i, j = 1, · · · , tº ´ µ Ë Ị × Ù Ú Ị ϕº ´ µ ÌøĐ Đ Ø ì c ậ ệÔể ề ệ ỉứẹ Ñ Ø × {r1 , · · · , rs } Ĩ Ị à Ư(ϕ) Ị Ð Ị × Ĩ Ĩ F + crIt ≻ ØƯòỊ ∆m º Ị ẵ ĩ í ề ỉ h It ó ¿º¿º º Ĩ K ⊆ Rm Ð Đ Ø Ø Ơ ĨĐƠ Ø Đ Ø× Ø c∈R× Ĩ Ĩ G(y) ữỉá ềụ G(y) G(y) cIt Đ y ∈ K Đ h Đ ØƯ Ị Ø ề ề èứẹ ẹ ỉ ì ỉ ề òỊ λ × Ĩ Ĩ F (y) Ø ỊØ ØỊ cIt , Ú F := F + crIt º y ∈ ∆m º Ị Ư Ị ¸ Ú G ∈ St (R[Y ])º Ã Ñ y ∈ K Ø ø Đ ØF ¸ y ∈ K Ị Ø Ø Ị × c > × Ĩ Ĩ Ị ĐỊ º × λ1 (G), · · · , λt (G) Ð Ị Ị Đ ØƯ Ư òỊ Ø ¸ è ểệ ẹ ẵá i (G) é ẹ é ũề Ø º Ĩ K Ð Ø Ơ ØƯ Ị G ∈ St (R[Y ]) Ì Ĩ ỊòỊ Ø ci := λi (G)(y), i = 1, · · · , t ỉ ẹ ễ ểẹễ ỉá yK ữ c := maxi=1,··· ,t ci º Ỵø Ị Ị ỊòỊ Ø Ĩ Ị Ị ú c Ø ×ÙÝ Ư Đ ØƯ Ư òỊ G−cIt Ð λi (G)−c¸ i = 1, · · · , t¸ λi (G)(y) − c ≥ λi (G)(y) − ci ≥ Ú Đ ´ µ y∈K Ú Ú Ơ Ị Ị Ø Đ i = 1, · · · , tº Ã Ó Ø Ó G(y) ẹ y K h ẵẳà ỉứẹ L := L(F ) èứẹ ẹ ỉ ì ỉ ề òÒ N > d(d − 1) L − dº ẵẳà èứẹ ẹ ỉệ ề ữ ì ỉ λi (X)¸ Ị Ø Ị Ị Đ Ø Ị Ø cIt , Ú Đ Ø Úù h N Đ ØƯ Ò ( m i=1 Yi ) F ∈ St (R[Y ])á ỉ ừề ể F ì ửẹề ểề ¾ Ị Ø Ð Ơ ØƯòỊº Ý Yi Ú ể ẻự ắ ề ỉ ĩ ỉ ứề ề ÒÚ Ø ÑØ Ø P := {(x, y) ∈ R2 |λ′1 = + x ≥ 0, λ′2 = − x ≥ 0, λ′3 = + y ≥ 0, λ′4 = − y ≥ 0} Ò c1 = c2 = c3 = c4 = ¸ Ø λ1 := Ø õØ i=1 ′ i=1 ci λi (x, y) = 1º Ĩ ¸ Ø 1 1 1 1 + x, λ2 := − x, λ3 := + y, λ4 := − y ∈ R[x, y], 4 4 4 4 λi = º −2 0 0 −2 Ý Ư Ị Đ ØƯ Ị B = Ø Đ ỊƠ Ị ØỊ B · [λ1 λ2 λ3 λ4 ]T = [x y]T Ó ϕ : R[y1 , y2 , y3, y4 ] → R[x, y] Ð Đ Ø λi (x, y)¸ i = 1, 2, 3, ỉ ì ệÔể ề ệ ể Ò ÙÚ Ò Ü Ø Ò Ò Ã Ö(ϕ) ϕ Ð Ò ϕ(yi ) := 1 {r1 , r2 } := {y1 + y2 − , y3 + y4 − } 2 Ø r := r12 + r22 º Ị Ø Ü Ø Ø F := Ỉ Ị Đ Đ ØƯ Ị −4x2 y + 7x2 + y + x3 + 5xy − 3x x3 + 5xy − 3x x4 + x2 y + 3x2 − 4y + ØƯ Ư òỊ FÐ λ1 (F) = 6x2 − 4x2 y − 4y + 6; λ2 (F) = x4 + x2 y + 4x2 + y + Ỵ Đ (x, y) ∈ P Ø λi (F)(x, y) ≥ 2¸ i = 1, 2º ËÙÝ Ư F(x, y) 2I2 Ú Đ (x, y) ∈ P º Ỵ Đ ØƯ Ị B Ĩ ØƯòỊ¸ Ø F = (fij )¸ ØƯĨỊ f11 = −4(2y1 − 2y2 )2 (2y3 − 2y4)(y1 + y2 + y3 + y4 ) + 7(2y1 − 2y2 )2 (y1 + y2 + y3 + y4 )2 + (2y3 − 2y4 )(y1 + y2 + y3 + y4 )3 + 3(y1 + y2 + y3 + y4 )4 , f12 = f21 = (2y1 − 2y2 )3 (y1 + y2 + y3 + y4 ) + 5(2y1 − 2y2)(2y3 − 2y4 )(y1 + y2 + y3 + y4 )2 − 3(2y1 − 2y2 )(y1 + y2 + y3 + y4 )3 , f22 = (2y1 − 2y2 )4 + (2y1 − 2y2 )2 (2y3 − 2y4 )(y1 + y2 + y3 + y4 ) + 3(2y1 − 2y2 )2 (y1 + y2 + y3 + y4 )2 − 4(2y3 − 2y4 )(y1 + y2 + y3 + y4 )3 + 6(y1 + y2 + y3 + y4 )4 º Ỉ Ị Đ ØƯ Ư òỊ F Ð ¿ λ1 (F) = λ1 (F) = 35y14 − 52y13 y2 + 54y13y3 + 34y13y4 + 82y12 y22 + 2y12 y2 y3 + 6y12 y2 y4 + 48y12 y32 + 68y12y3 y4 + 20y12 y42 − 52y1 y23 + 2y1 y22y3 + 6y1 y22 y4 + 8y1 y2 y3 y4 + 8y1 y2 y42 + 18y1 y33 + 42y1 y32y4 + 30y1y3 y42 +6y1 y43 +35y24 +54y23y3 +34y23 y4 +48y22y32 +68y22 y3 y4 +20y22y42 +18y2 y33 +42y2 y32y4 + 30y2y3 y42 + 6y2 y43 + 5y34 + 16y33y4 + 18y32y42 + 8y3 y43 + y44¸ λ2 (F) = λ2 (F) = 30y14 + 24y13y2 + 32y13y3 + 112y13y4 −12y12 y22 + 32y12y2 y3 + 16y12y2 y4 + 4y12y32 + 120y12y3 y4 + 116y12y42 + 24y1 y23 + 32y1y22 y3 + 16y1y22 y4 + 40y1 y2 y32 + 48y1y2 y3 y4 + 8y1 y2 y42 + 48y1y32 y4 + 96y1 y3 y42 + 48y1 y43 + 30y24 + 32y23y3 + 112y23y4 + 4y22y32 + 120y22y3 y4 + 116y22y42 + 48y2y32 y4 + 96y2 y3 y42 + 48y2 y43 − 2y34 + 8y33y4 + 36y32y42 + 40y3 y43 + 14y44º Ì min∆4 λ1 (F) = 1, min∆4 λ2 (F) = −2 −2 = 16¸ Ø ư¸ À Ị Ị ¸ min∆4 ∩{λ2 (F)≤0} r = 0.125º Ĩ Ị Ø Ø Ịc>− 0.125 c = 17¸ F := F + crI2 ≻ ØƯòỊ ∆4 º Ì ÙỊ Ị h Ø F yi Ị Ø Ị Ị Đ Ø Ø Đ ØƯ Ị Ø ÙỊ Ị h ØF = i=1 ¸ (fij )¸ ØƯĨỊ h f11 = (3(y1 + y2 + y3 + y4 )2 + (2y1 − 2y2 )2 + (2y3 − 2y4 )(y1 + y2 + y3 + y4 ))(y1 + y2 + y3 + y4 )2 +(6(y1 +y2 +y3 +y4 )2 −(4(2y3 −2y4 ))(y1 +y2 +y3 +y4))(2y1 −2y2)2 +17(0.5y1 +0.5y2 − 0.5y3 − 0.5y4)2 (y1 + y2 + y3 + y4 )2 + 17(0.5y3 + 0.5y4 − 0.5y1 − 0.5y2 )2 (y1 + y2 + y3 + y4 )2 ¸ h h f12 = f21 = (y1 + y2 + y3 + y4 )(3(y1 + y2 + y3 + y4 )2 + (2y1 − 2y2 )2 + (2y3 − 2y4 )(y1 + y2 + y3 + y4 ))(2y1 − 2y2 ) + (2y1 − 2y2 )(6(y1 + y2 + y3 + y4 )2 − (8y3 − 8y4 )(y1 + y2 + y3 + y4 ))(−y1 − y2 − y3 − y4 )¸ h f22 = (3(y1 + y2 + y3 + y4 )2 + (2y1 − 2y2)2 + (2y3 − 2y4)(y1 + y2 + y3 + y4 ))(2y1 − 2y2 )2 + (6(y1 + y2 + y3 + y4 )2 −(8y3 −8y4 )(y1 + y2 + y3 + y4))(−y1 −y2 −y3 −y4 )2 + 17(0.5y1 + 0.5y2 − 0.5y3 − 0.5y4)2 (y1 + y2 + y3 + y4 )2 + 17(0.5y3 + 0.5y4 − 0.5y1 − 0.5y2 )2 (y1 + y2 + y3 + y4 )2 º h h Ị Ø Ø ØùỊ min∆4 λ1 (F ) = 1.9706, min∆4 λ2 (F ) = 1.5294 h óÙ Ị Ý û Ư Ư Ị F 1.5294I2 ØƯòỊ ∆4 ¸ Ú λ := 1.5294º 87 1044 h = ễ ề ề ỉ ẵẳàá ề ỉ ỉ ØøĐ × L := L(F ) = 24 167 h Ĩ ¸ Ị N = 167¸ Ø Đ ØƯ Ị (y1 + y2 + y3 + y4 ) F ẹ ỉệ ề ữ ì é ĩ ề ề h èứẹ ẹ ỉệ ề ữ ì Ø Đ ØƯ Ị (y1 + y2 + y3 + y4 )167 F ∈ St (R[y1 , y2 , y3 , y4])¸ Ø yi λi (x, y)¸ Ị Ø Ị Ị õỊ Ĩ Fº ÃèÌ ÄÍ Ỉ ÌƯĨỊ ÄÙ Ị Ị Ị Ø Ø ÕÙ ùỊ ì ẵà è ụỉ é ễ ẹ ỉ ì Ị ØƯòỊ Ú Ị Ĩ ØƯ Ư òỊ Ø Đ ØƯ Ị Đ Ø ơỊº Ø ư¸ Ị Ø ệ ề ẹ ỉệ ề ể ề é ề ìỉệÔ ểẹạ í ĩ ẹ ề é ắẵắá ắẵá ắẵ ề ỉ ề ỉ ệ ẹ ỉì ề Đ ØƯ Ị Ĩ Ị Ð Ị Ù Ý ĩ ẹ ề é ắắắá ắắ ắắ ắắ ắắẵẳá ắắẵắá ắắẵ ắắẵ ắắẵ ũề ề ề ỉ ìể ì ề ề Ø ØƯĨỊ ÄÙ Ị Ị Ú Ị Ư À ẹ è ìì ệ ắắ ĩ ẹ ắà ắà ệ ẹ é ũề ữ ề ề ỉ ÙỊ Ị ØùỊ Ø Ị Đ Ø Ø Đ ØƯ Ị ØƯòỊ Đ Ø Ø Ơ Ị Ị ´Ü ẹ ữề ú ẵ ẵá ẵ ắá ẵ ẵ à ệ ẹ ỉ ề ẹ ỉệ ề ể ề é ề é ẵắàá ỉ ×ÙÝ Ư Đ Ø Ị Đ ØƯ Ị ´Ü Đ ữ ế ẵà ệ ẹ ỉ é ắắà Ị Đ ØƯ Ị Ĩ ´ µ Ư Đ Ø Ị Ị Ị ØƯòỊ Đ Ð ¸ ĨĐƠ Ø ´Ü Đ Ĩ Ø Đ Ị Ð õỊ õỊ × ề ẩỉ ề ệạẻ ì é ì ĩ ẹ ề é ừề ề ấ ịề ề ềìểềạẩể ĩ Đ Ị Đ ØƯ Ị Ĩ Ị Ð À Ị ÐĐ Ị¸ õỊ Đ Ø Ø Đ ØƯ Ị ĩ ỉ ề ứề ĩ ẹ ề é ẵà ĩ ề ề ỉệũề ẹ ỉ ữề ề é ắà Ì ¸ Ị Ø ó ÜÙ Ø Đ Ø Ø Ø ØøĐ õỊ Ị Ý ØƯ Ị ´Ü Đ Å ¿º¿º¿µº ÕÙ ùỊ ØƯĨỊ ÄÙ Ị Ị Ø ề ỉệểề ẳắ ể ẵắá ẳ ỉ úề ề ễ ẹ ẵ ụỉ ế ỉệũề é ẹ Ú Ị Ơ Ø òĐ Ú Ĩ Ị Ị òỊ Ù Ị Ð õỊ Ị Ĩ Ø Ú Ø Đ ØƯ Ị¸ Ị Ị Ị Ị Ị ØƯĨỊ Ì Ù Ø ¸ Ä Ø ÙÝòØ óÙ ưỊ Ú ØĨ Ị Đ Đ Ịº Å Ø× Ú Ị óỊ òỊ Ù Ø ơƠ Ø Ĩ ½º ÌøĐ óÙ ÷Ị õỊ Ị ØƯĨỊ ÄÙ Ị Ị Ĩ Ị Ð õỊ Ị Ỉ ÙÝòỊ Ị Ị ÜÙ Ø ÷Ị Đ Ù Ø ØƯĨỊ Ị Ø Ø ể ậ ẹÔ ề áẹ ỉ ề ẹ õỊ Ø Ị × Ị ỊØ ÝØ Ĩ Ị Ø Ơ Ị òỊ Ùº Đ ÙØ ÈÙØ Ị Ú Đ ØƯ Ĩ ØƯĨỊ ề ẹ ỉệ ề ệ ệạẻ ì é ì ềìểềạẩể ừề ề ỉệũề é ể ề Ø Ơ Ø Đ ØƯ Ị ´ ó ½º º µº Ĩ Ị Ị ´ Ị е ØƯòỊ Đ Ø ỉ ễ ỉệũề í ậ ẹÔ ề é ề ¾º ÌøĐ Ị ØƯĨỊ Ä Ø ÙÝ Ø ÷Ịº Ị Ị Ð õỊ óÙ ưỊ Ú ØƯĨỊ ÐúỊ Ú Ị ¸ Ø Ø Ĩ Ø Đ ØƯ Ị Ị Ø Ị Ë Ư Ư¹ÀĨÐ ℄ Ị Đ Ị ØỊ Ø Ð òỊ ÕÙ ề ụề ề ề ẵà è ắẳẵ ặểỉ ểề ẩểì ỉ ìỉ éé ềìÔỉị ểệ ỉệ ĩ ẩểéíềểẹ éì ểệề é ể ỉ ẹ ỉ ìá ắàá ẵ ẵạẵ ắ ẵ ắà ìỉạẽ ìỉ è ũá è ắẳẵ ề éẹ ềì ẩểì ỉ ìỉ éé ềì ỉị ểệ ẩểéíềểẹ é ỉệ ì ẩểì ỉ ề ỉ ểề ẩểéí ệ ẩểì ỉ ỉíá ắàá ẳ ắắ è è ũá è ặ íừề ắẳẵ ầề ỉ ỉệ ĩ ẩểéíềểẹ éì ì ẹ ỉỉ ể ỉ ểề ể ề é ì ể è é ữ ỉ ẹ ẵ Ô ệ ệỉ ề ẵ ắ àá Í ƯÐ ÙỊ Ë Đº ÍỊ Úº À Đ ÙƯ ẵẳẳạẵẵ ề ỉ ệ ề ỉ ểề ề ề ẫ ắ ấ ắẳẳẵàá ỉệ ĩ ỉ ỉ àá ẩểéíềểẹ éì ề ẩểéíềểẹ é ề ế é ỉ ìá ậễệ ề ệạ ể ề èạ ẹ ẵ ẵạẵ àá ắẵ ĩỉệ ẹ é ễểì ỉ ì ẹ ẹễệ Đ ắẳẳ àá ệ ễệ ì ềỉ ỉ ểề ỉ ểệ ẹ ểệ ạệ ề ì ề ỉ éé ẵàá ắ ắ é ệ ỉ ề éíì ìá ậễệ ề ệá ặ ểệ ẩ ểệ ề ề è ệ éí ẵ ẻ ệé ặ ểệ ềề ể ẹễệ Đ ắẳẵắàá ấ é é ệ ạẵẳ ệ ệ ẹ ềỉ ề ế ểệẹìá ỉ ệ ỉ ĐĨ ÙÐ × ĨỊ ĨĐ ØƯÝ ĨƯ Đ ØƯ × ể ệ ểẹẹỉ ỉ ệ ề ìá ẹễệ Đ ề é ệ ắẳẵàá ểẹ ềỉ ễệể é ẹì ểệ ểễ ệ ỉểệ ễểéíềểẹ éìá ỉ ề é ễễé ẵàá ẳ ạẵ ẳẵ ỉỉ ề ặ ễễệểĩ è ểệí ắ ể é ẵ ắ ẹ ệ ắẳẳ àá ầề ỉ ễễé ỉ ẵàá ẵạẵ àá ầề ỉ éể ỉ ểề ể ỉ ị ệểì ể ễểéíềểẹ éá éể ỉ ểề ể ị ệểì ể ểẹễé ĩ ễểéíềểẹ éìá ề ế é ẩệ ẵẳ ẩ ềìểềá ẩể ắẳẵ àá ầề ề ÜØ Ị× ĨỊ Ĩ È ÐÝ ³× ÈĨ× Ø Ú×Ø éé ềì ỉịá ầễỉ ẹ àá ẵ ¾ º ½ ½½℄ º ƯƯ Ị Àº ú Ï ẹẹ ệ ắẳẳ àá ề ề ìỉệÔ ểẹạ í ỉ ểệ ẹ ểệ ềểẹ é ẹ ỉệ ìá èệ ềì ỉểẹ ỉ ểềỉệểé ắẵ ẵ ắẵ ắ éể é ệẹ ỉ ề ễểéíạ ẵắ è ỉ ẵ ắẳẵ àá ặểỉ ểề ẩểì ỉ ìỉ éé ềìÔỉị ểệ ỉệ ĩ ẩểéíềểẹ éìá ắàá ẵ ẵạẵ ắ ẵ è è ũá è ặ íừề ắẳẵ àá ầề ỉ ẩểéíềểẹ éì ì ẹ ỉỉ ẵ ểệ ẵ ấ é ệ ắẳẵẵàá ỉệ × Ị Ư Ơ × Ị ĨĐ ØƯݸ º Ư Þ Ư¸ Ϻ º ÙỊ Ị Ị º ʺ ĨÐÐ ệ ẵ ẹ ệ ề ẩệ ììá ểề ểề ề ặ ểệ ẵ ể ệ ¸ Ⱥ Ä Ị ×Ø Ư Ị ĺ ÊĨ Đ ề ẵ ặ ểệ ẵ ạẻ èạ ể ắẳẵ àá ẩểì ỉ é ệ ì ỉìá ề ì ề ểẹ ỉệíá ẵ ể ỉ ểề ể àá ìỉạẽ ìỉ ề é ì ể ỉệ ĩ ẹ ệ ề ẩệ ììá ặ é ẹ ềỉ ệí ẹ ỉệ ìá ắề ắàá ỉệ ĩ ẩểéíềểẹ éìá ễểéíềểẹ éì ểề ềểề àá ẵẳ ẹ ẩệ ììá ề ệ ỉ ì ì ẹạ ẵ ậ ẹ ệé ề ềệể ề è ìì ệ ắẳẵàá Ị Ð ĨƯ Ø Đ ĨƯ Ø ĨĐƠÐ Ø ×ĨÐÙØ ểề ể ế ệ ỉ ề é ễệể é ẹìá èệ ềìá ỉ ậể ỉ àá ệỉ Ð ½ º ¿ ½ ℄ º À Ị ÐĐ ề ẵ àá ấ ễệ ì ềỉ ề ễểéíềểẹ éì Ý ƠĨ× Ø Ú Ð Ị Ư ÙỊ Ø ĨỊ× ĨỊ ểẹạ ễ ỉ ểề ĩ ễểéí ệ ẩ ỉ ắ ắẳ é ề ẵ àá ầề ỉ ĐĨĐ ỊØÙĐ ƠƯĨ Ð Đ ĨƯ Ø Ị ĨỊ Đ ềì ểềá ẹ ệ ỉ ắạ ắ ẵắ ìỉệ ỉ ểề ề ỉ ểềì ề ẹểệ ắẵ ặ ẹ ề è ìì ệ ắẳẳẵàá ËØỨ ØÙƯ Ơ× Ù Ĩ×Ơ ØƯ ĨƯ ƠĨÐÝỊĨĐ Ð Ú ÐÙ ễệể é ẹìá ỉ ễễé ỉ ểềìá ậ ỉệ ĩ ề é ễễé ẵàá ẵ ạắẳ ắ ắắ ặ ẹ ề è ìì ệ ắẳẳàá ề ệ é ệ ễễé ạắắ ắ ắ Ô ệ é ệỉ ẵ àá ế ệ ỉ ềá ỉ ỊỊº º ÂĨÝ Ð¸ º Ä ÐÐ Ị º Å Ø º ÙÐк ¾ ℄ º ĺ ÃƯ Ú Ị ẵ ệìỉ éé ềì ỉị ắạ ẳ àá ẹ ề ẵ ề é ì ể ỉệ ĩ ẩểéíềểẹ éìá ề ỉ ệ ểệẹ ề éì ậẹẹ ểề ểệẹ ềạ ắ ề ẫ ấ ẵẳ ểề ì ểệ ềạ àá ầề ỉ ềề ĩ ễệ ểệ ểềề ìá éể ỉ ểề ể ị ệểì ể ễểéíềểẹ éìá ề éíì ỉ ẵắá ẳ ạắ ắ ẩ ề ìỉ ệ ẵ àá ẹ ạẹ ỉệ ì ề ệ ỉ ề ìíìỉ ẹìá ẩ ệ ẹểề ẩệ ììá ầĩ ểệ ắ ìì ệệ ắẳẳẵàá éể é ểễỉ ẹ ị ỉ ểề ỉ ễểéíềểẹ éì ề ỉ ẹ ềỉìá ậ ầễỉ ẹ àá ẵ ẵẵ ễệể é ẹ ể ẹểạ ắ ệ ềỉ ắẳẳ àá ậẹì Ĩ ×ÕÙ Ư × ĐĨĐ ỊØ Đ ØƯ × Ị ểễỉ ẹ ị ỉ ểề ể ệ ễểéíạ ềểẹ éìá Ị Đ Ư Ị ƠƠÐ Ø ĨỊ× Ĩ Ð Ư ểẹ ỉệíá ặ ểệ ậễệ ề ệá ẵ ạắ ẳ ẵ ắ ẳ è ũ ắẳẵ àá ậểẹ ẩểì ỉ ìỉ éé ềìÔỉị ẵạ ắ ểệ ễểéíềểẹ é ẹ ỉệ ìá ẩểì ỉ ỉí ẵ àá è ũá è ắẳẵ àá ề éẹ ềì ẩểì ỉ ìỉ éé ềì ỉị ĨƯ ÈĨÐÝỊĨĐ Ð Å ØƯ × ÈĨ× Ø Ú Ị ỉ ểề ẩểéí ệ ẩểì ỉ ỉí ắàá ẳ ắắ ẵ ệ ề ẵ àá ểẹ ỉệí ể ễểéíềểẹ éìá ỉ ẹ ỉ é ậệ íì ậể á ấ ể ìé ề ắ ệì ẹ ệ ỉ éé ắẳẵẳàá ÈĨ× Ø Ú ƠĨÐÝỊĨĐ Ð× Ị ×ÙĐ× Ĩ ×ÕÙ Ư ìá ậễệ ề ệ ẻ éể ềể ¡ ¸ º ˺ Å ØƯ ỊĨÚ Ị Ì º ź ấ ìì ì ẵ àá èểễ ì ề ễểéíềểẹ éìá ĩỉệ ẹ é ễệể é ẹìá ề ế é ỉ ׸ ƯĨ׸ ÏĨƯÐ Ë ỊØ ¸ Ë Ị ƠĨƯ º ¿ ℄ º Ỵº Å ÐĨÚ ỊĨÚ ¡ Ị Ì ấ ìì ì ắẳẳẳàá ề ế é ỉ ì ểệ ễểéíềểẹ é ị ệểìá ề ậệ í ểề Ð ×× Ð ÁỊ ÕÙ Ð Ø × ´Ì º ấ ìì ìá àá ỉ ẹ ỉ ì ề ỉì ễễé ỉ ểềì ẵ ạắẳắá é ệá ểệ ệ ỉ ẵ è ểỉị ề ẵ àá è àá ẩệể ậíẹễ ẽệ ắắ ệ Ø Đ Ø ¹ ĨĐ ØƯ Ị ÕÙ Ð Ø ìá ề ề ế é ỉ ì ẳ ậ ì ỉạẩ ỉỉ ệìểề ìỉ ẵ ạắ ẵ ẹ ẩệ ììá ắẳ ặ ìỉ ệể ắẳẳẳàá ậế ệ ề ỉ ểề é ìíìỉ ẹì ề ểễỉ ẹ ị ỉ ểề ễệể é ẹì ¸ Ị º º º Ư Ị ¸ º ÊĨĨ׸ è è ệé íá ề ậ ề ỉểệìá ẩ ệ ểệẹ ề ầễỉ ẹ ị ỉ ểềá ẳ ẳ é ệ ẹ ẩ é ì ệì Ô ệ ễểì ỉ ẩ éí ẵ ắ àá ì ệ ẵ ẵạẵ ệìỉ ééề ểề ẩểéíềểẹ ềá ẻ ệỉ é ì ệ ặ ỉệạ ểệì ẻ ẩể ệìá ấ ịề ắẳẳẵàá ề ểề ểệ ẩ éí ³× Ø ĨƯ Đ Û Ø ƠƠÐ Ø ĨỊ× ØĨ ễểéíềểẹ éì ễểì ỉ ểề ễểéí ệ ẩệ ễễé é ệ ắắẵạắắ ẵ ẳ ẩỉ ề ệ ẵ àá ẩểì ỉ Ú ƠĨÐÝỊĨĐ Ð× ĨỊ ĨĐƠ Ø × Đ Ð Å ỉ àá ệ ì ỉìá ề ẳ ẩỉ ề ệ ề ẻ ì é ì ẵ àá ậểé ề ẹểẹ ềỉ ễệể é ẹì í ỉ ềì ểềá ềề ể ỉ ắàá àá ẵẳ ạẵẵẳ ẹ ềì ểề é ĩạ ẵ ẵ ấ ịề ẵ ắắẳ àá ề ểệẹ ềểẹ ề ỉểệì ề é ệỉì × Ú ỊØ ỊØ ƠƯĨ Ð Đ¸ Å Ø º ệ ệ ắẳẳàá ậẹì ể ìế ệ ì ểề Ö Ð Ð ¾℄ º Ë ¿℄ º Ë Ö ệ ắẳẳ àá ìỉ ề ì é ệ ắ ề ề ệ ệ ׸ Å Ø º º Ư ƠƯ × ỊØ Ø ểềì ể ềểềạề ắ ắ ẳ ỉ ễểéíềểẹ éìá ẽ ậ ệ ệá ẽ ểé ắẳẳ àá ỉệ ĩ ìẹạể ạìế ệ ì Ư Ð Ü Ø ĨỊ× ĨƯ ƯĨ Ù×Ø × Đ ề ỉ ễệể ệ ẹìá ỉ ẩệể ệ ẹ ẵáắàá ẵ ạắẵẵ ẵẳ ậ ẹÔ ề ẵ ẳàá ề ểề ểễ ệ ỉểệ é Ư × Ị Ư ƠƯ × ỊØ Ø ĨỊ Ø ểệí ầễ ệạ ỉểệ è ểệí ề ì ề ễễé ỉ ểềìá ệ Ôì ệ ẻ ệé ì éạ ểìỉểềạ ệé ề ậ ẹÔ ề ẵ ẵàá è ềề ắẳạắẳ ạẹểẹ ềỉ ễệể é ẹ ểệ ểẹễ ỉ ì ẹ é ắ ậ ẹÔ ẵ ×ØƯ Ø ÈĨ× Ø Ú×Ø ÐÐ Ị× ØÞ ĨƯ Ø ề ắẳẳ àá ẽ íé é ệ ì ỉìá Å Ø º Ư ¸Å Ø º ỊỊº ℄ ú ậ ẹÔ ề ắẳẳ àá ặểề ểẹẹỉ ỉ ệ é é ệ ểẹ ỉệí ìểẹ ì ểề ễỉì Ị Ư×Ø ×º ÁỊ Đ Ư Ị ƠƠÐ Ø ĨỊ× ể é ệ ểẹ ỉệíá ẻểé ỉ ễễé ậễệ ề ệá ặ ểệ á ắ ẳ ẵ ậ ể ệ ắẳẳắàá º ÈÙƯ ƠƠк Ð Ư º ½ Ị Ð ĨƯ ỉ ẹ ễễệể ỉể ậ ẹÔ àáẳ ạẵ ềì ẩểì ỉ ìỉ éé ềì ỉịá ẳ ậ ể ệ ắẳẳ àá éể é ểễỉ ẹ ị Ø ĨỊ Ĩ ƠĨÐÝỊĨĐ Ð× Ù× Ị Ị ×ÙĐ× Ĩ ìế ệ ìá ậ ầễỉ ẹ àá ắẳạ ắ ẵ ẵ ặ ậ ểệ ẵ àá é ìì ể ề ỉ ì àá ẵạ ¾¿ Ư ỊØ Ø ỊØ Ð × ÐĨ Ð Đ ề ẹẹ ểề ì ể ễểéíềểẹ é ề ỉ ểềì í ệạ ắ ẻ ậ ẹểề ề ẩ ệểỉỉ ắẳẳ àá ầề ỉ ềẹ ệ é ìểéỉ ểề Ó (λ2 A + λB + C)x = b Ò ễễé ỉ ểề ỉể ìỉệ ỉệ é íề ẹ ìá ậ ậ ểẹễỉ ẵ ạẵ ắ ẵ ậề ề ẽ ậ ắẳẵẵàá ầề ỉ ểẹễ ỉ ẵàá ẵạẵẳ ể ỉ ểề ể ẵ ậỉ ề é ẵ àá ỉệíá ỉ ềề ắẳ ặééìỉ éé ềì ỉị ề ẩểì ỉ ìỉ éé ềì ỉị ề ì ẹ é ẵ àá ểềỉ ề ỉí ề ể ỉ ểề ể ềểẹ éìá ẩệể ẹ ệ ỉ ậể ẵ ề ề ậ ắẳẵ àá é ẹìá ậ ỉệ ĩ ề é ệểì ể ẩểéíềểẹ éìá ệ ìỉ é ễễé ắàá ắ ệểì ể ề ệ é ểệ ỉ ẹ ểệ ế ẵ º Ư Đ Ưº º ĨĐ ¹ ĨĐ Ị Ø ểềì ể ẩểéíạ ệ ỉ ề é ễệể ... 0, , d, é ì ỉ ề ữ := ề ắì ề ữẹ z C ai+1 f (z) Ø ai+1 , β := max 0≤i≤d−1 Đ Ị α ≤ |z| ≤ β ỉ ửề ì ỉ ề é ẵẵ ´ à ¸Đ Ị Ú M = max ÌƯĨỊ ỉệ ề ề ỉ ề ề ữ ế ẵẵ ễ íá ữẹ á ề é ề ẵá ẵá Ø dº º d Ó... à ÷Ù i=0 M := max à ÕÙ f (z) Ị Đ ØƯĨỊ ad ú K(0, r1 ) = {z ∈ C| |z| ≤ r1 }, ỉệểề r1 é ề ữẹ ề é ềề ỉ Ơ Ị ØỊ z d+1 − (1 + M)z d + M = Ơ Ị Ị Ð ½º½º Ĩ ữ ế ẵẵ ỉ (1 z)f (z)á M := max áẹ ề ữẹ ỉ z... i=1, ,d áẹ ề ỉ ì γ := max Ã Đ Ị 1+ Ị + 4α   Ó f (z) = ad z d + ad−1 z d−1 + · · · + a1 z + a0 Ð Đ Ø |z| ≥ Ơ ad−1 ad g(z) = z d f ( z1 )¸ i=2, ,d ¸Đ Ơ ad i=0, ,d−2 β := max ỉ ữẹ ễ ề ề é ẵẵ

Ngày đăng: 02/01/2019, 08:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w