1. Trang chủ
  2. » Đề thi

Đề thi thử THPTQG năm 2019 môn toán THPT sơn tây hà nội lần 1 file word có lời giải chi tiết

25 337 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,57 MB

Nội dung

SỞ GD&ĐT NỘI THPT SƠN TÂY ĐỀ THI KHẢO SÁT CHẤT LƯỢNG (Lần 1) NĂM HỌC 2018 - 2019 BÀI THI: TOÁN 12 Thời gian làm bài: 90 phút (khơng kể thời gian phát đề) (Đề thi 06 trang) Họ tên học sinh : Số báo danh : đề 125 Câu 1: Giải phương trình cos x   k ,k  B x  k , k  C x   k 2 , k  D x  k 2 , k  2 Câu 2: Cho hàm số y  f ( x) đạo hàm f '  x   x  Chọn khẳng định A x  A Hàm số nghịch biến B Hàm số nghịch biến  ;1 C Hàm số đồng biến D Hàm số nghịch biến (1;1) Câu 3: Cho lăng trụ đứng ABC A ' B ' C ' diện tích tam giác ABC Gọi M , N , P thuộc cạnh AA', BB ', CC ' diện tích tam giác MNP 10 Tính góc hai mặt phẳng ABC MNP A 60 B 30 C 90 D 45 Câu 4: Phương trình tập nghiệm biểu diễn đường tròn lượng giác hai điểm M , N ? B 2cos x  C 2sin x  x Câu 5: Giá trị lớn hàm số y   2;3 x 1 D 2cos x  A 2sin x  3 B C D 3 Câu 6: Trong không gian cho đường thẳng a điểm M đường thẳng qua M vng A góc với đường thẳng a ? A Khơng B hai C vơ số Câu 7: Cho hình chóp S ABCD đáy hình chữ nhật, SA SB SC D SD số mặt phẳng đối xứng hình chóp A B C D Câu 8: Lấy ngẫu nhiên thẻ từ hộp chứa 20 thẻ đánh số từ đến 20 Xác suất để lấy thẻ ghi số chia hết cho A 20 B 10 C D 20 Câu 9: Cho hình chóp S ABCD đáy hình bình hành Giao tuyến  SAB   SCD  A Đường thẳng qua S song song với AB B Đường thẳng qua S song song với BD C Đường thẳng qua S song song với AD D Đường thẳng qua S song song với AC Câu 10: Thể tích khối chóp độ dài đường cao , diện tích đáy A 12 B 48 C 16 Câu 11: Trong dãy số  un  sau đây, dãy số cấp số nhân ? A un  3n D 24 C un  n B un  2n Câu 12: Cho dãy số un , lim un D un  2n  lim a,lim A B Câu 13: Tính đạo hàm hàm số y  x sin x un C D B y' x sin x cos x C y' sin x x cos x D y' x sin x cos x sin x x cos x Câu 14: điểm M thuộc đồ thị hàm số f ( x)  x  cho tiếp tuyến đồ thị hàm số A y' f  x  M song song với đường thẳng d : y  3x 1 A B C D Câu 15: Nếu hai biến cố A B xung khắc xác suất biến cố P  A  B  A  P ( A)  P  B  B P ( A).P  B  C P( A).P  B   P  A   P  B  D P ( A)  P  B  Câu 16: Tìm số điểm cực trị hàm số y  x4  x2 A B A x  B y  1 D C 2x 1 Câu 17: Tìm tiệm cận ngang đồ thị hàm số y  x 1 D y  C x  1 Câu 18: Cho a số thực dương Viết rút gọn biểu thức a 2018 2018 a dạng lũy thừa với số mũ hữu tỉ Tìm số mũ biểu thức rút gọn A 1009 1009 x 2018 x  B Câu 19: Tính giới hạn lim x  A  x  1 B 2018 2019 C 1009 D 20182 ? C 2019 D 2017 2 Câu 20: Cho hình chóp S ABCD đáy hình vng, SA vng góc với đáy Góc đường thẳng SC mặt phẳng  ABCD  A SCB Câu 21: Cho hàm số y B CAS C SCA D ASC f x xác định liên tục 3;3 Đồ thị hàm số y f '( x) hình vẽ Hỏi hàm số y f x đạt giá trị lớn đoạn 3;3 điểm x0 ? A B Câu 22: Giá trị cực đại hàm số y   x3  3x C D A B Câu 23: Tứ diện ABCD cạnh ? C D A B C Câu 24: Hàm số đồ thị hình vẽ A y x3 3x B y x3 3x C y D x3 3x D y x3 3x Câu 25: Cho điểm M 1;  v   2;1 Tọa độ điểm M ' ảnh điểm M qua phép tịnh tiến v A M' 1; 1 B M'  3; 3  Câu 26: Cho hàm số y  f ( x) liên tục C M'  1;1 D M'  3;3  bảng biến thiên sau: Tìm khẳng định ? A Hàm số cực trị B Hàm số đạt cực tiểu x  C Hàm số đạt cực đại x  D Hàm số đạt cực tiểu x  Câu 27: Cho khối hộp ABCD A ' B ' C ' D ' tích V , thể tích khối ACC ' D ' D A V Câu 28: Hàm số y  B V C V ax  b , a  đồ thị hình vẽ bên cx  d D 2V Tìm mệnh đề ? C b  0, c  0, d  A b  0, c  0, d  B b  0, c  0, d  Câu 29: Khẳng định sau ? 2017 A C 2018 2018 2018 B D 2 2019 5 2018 2019 D b  0, c  0, d  2019 Câu 30: Trong đội văn nghệ nhà trường học sinh nam học sinh nữ Hỏi cách chọn đôi song ca nam- nữ ? A 91 B 182 C 48 Câu 31: Cho cấp số nhân un tổng n số hạng Sn n D 14 Tìm số hạng thứ năm cấp số nhân cho A 120005 C 7775 B 6840 D 6480 n Câu 32: Tìm số hạng không chứa x khai triển nhị thức x mãn Cn3Cnn A 2Cn3Cn4 20 B Câu 33: Biết đồ thị hàm số y y ax2 Cn4Cnn x3 5x 2018 x x m D 160 160 (m tham số) điểm cực trị Parabol bx c qua điểm cực trị Giá trị biểu thức T A 1989 B 1998 C 1998 Câu 34: Ta xác định số a, b, c để đồ thị hàm số y x3 ax2 điểm cực trị biết n số tự nhiên thỏa 1225 C , x x 2;0 Tính giá trị biểu thức T 4a b 3a 2b c bx c? A 20 B 23 C 24 Câu 35: Cho hình chóp S ABCD , đáy ABCD hình bình hành, mặt phẳng SC, SD M , N Tính tỉ số SN để SD D 1989 c qua điểm 0;1 D 22 qua AB cắt cạnh chia khối chóp S ABCD thành hai phần tích 1 B C D 2 Câu 36: Người ta trồng 3240 theo hình tam giác sau: hàng thứ trồng cây, kể từ hàng thứ A hai trở số trồng hàng nhiều so với hàng liền trước Hỏi tất hàng ? A 81 B 82 C 80 D 79 Câu 37: Cho hàm số y x3 đồ thị C Trên đường thẳng d : y x tìm hai điểm M x1 ; y1 , M x2 ; y2 mà từ điểm kẻ hai tiếp tuyến đến C Tính giá trị biểu thức S y1 y 22 y1 y2 113 14 59 41 B C D 15 15 15 15 Câu 38: Cho khối lăng trụ ABC A ' B ' C ' , hình chiếu điểm A lên mặt phẳng ( A ' B ' C ') trung điểm A M cạnh B ' C ' A ' M a , hình chiếu điểm A lên mặt phẳng  BCC ' B ' H cho MH song song với BB ' AH a , khoảng cách hai đường thẳng BB ', CC ' 2a Thể tích khối lăng trụ cho Câu 39: Cho hàm số f ( x) g ( x) 3a 2a D 3)( x 1)2 ( x 1)( x 3) đồ thị hình vẽ Đồ thị hàm số B a3 A 3a3 (x C x đường tiệm cận đứng tiệm cận ngang ? f ( x) f ( x) A C B Câu 40: Cho khối chóp S ABC đáy ABC tam giác vuông C , BC D a, BSC 60 , cạnh SA vng góc với đáy, mặt phẳng SBC tạo với SAB góc 30 Thể tích khối chóp cho a3 15 Câu 41: Cho hàm số y A 2a 45 f ( x) đạo hàm B a3 a3 D 45 đồ thị đường cong hình vẽ Đặt C g  x   f  f  x   1 Tìm số nghiệm phương trình g '( x) A B 10 C Câu 42: Cho hình chóp S ABCD , đáy ABCD hình vng cạnh a , cạnh SA đáy Gọi M , N trung điểm cạnh BC, SD , (SAC ) Giá trị tan D a vng góc với mặt góc đường thẳng MN A B C Câu 43: Số giá trị nguyên m thuộc đoạn 10;10 để hàm số D y  x3  mx   2m  1 x  nghịch biến khoảng 0;5 A 11 Câu 44: Cho tập hợp A B C 18 D 1; 2;3; 4;5;6;7;8;9 Gọi S tập hợp số tự nhiên chữ số lập từ chữ số thuộc tập A Chọn ngẫu nhiên số từ S , xác suất để số chọn chia hết cho 28 Câu 45: Cho hàm số y A 27 f ( x) đạo hàm f ' x B số m để hàm số g x f x 10 x x x2 C 3x giá trị nguyên tham D m2 điểm cực trị A B C 10 D 11 Câu 46: Trên đường tròn lượng giác số điểm biểu diễn tập nghiệm phương trình 2sin 3x cos x sin x A B Câu 47: Cho tứ diện ABCD cạnh AB C D Gọi M , N , P trung điểm cạnh AB, BC, AD Tính khoảng cách hai đường thẳng CM NP A 10 10 Câu 48: Cho hàm số y A y '' 10 10 C 20 10 4(sin x cos x) Tính đạo hàm cấp hai y '' ? tan x cot x B 16cos8x B y '' Câu 49: Đường thẳng d : y x OA2 OB2 ;2 2 A D 10 20 C y '' 16sin8x D y '' 16cos8x x hai điểm phân biệt A, B cho m cắt đồ thị hàm số y x 16sin8x , O gốc tọa độ Khi m thuộc khoảng B 0; 2 C 2; 2 D 2 2; Câu 50: Cho hình chóp S ABCD , đáy ABCD hình vng cạnh a , tam giác SAB Gọi M điểm cạnh AD cho AM x, x 0; a Mặt phẳng qua M song song với SAB cắt cạnh CB, CS , SD N , P, Q Tìm x để diện tích tứ giác MNPQ A 2a a a D HẾT -(Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm) B a C 2a ĐÁP ÁN 1-D 2-C 3-A 4-C 5-C 6-C 7-C 8-B 9-A 10-C 11-B 12-B 13-C 14-D 15-D 16-C 17-D 18-A 19-B 20-C 21-B 22-B 23-B 24-D 25-D 26-D 27-B 28-D 29-C 30-C 31-D 32-C 33-A 34-B 35-C 36-C 37-B 38-D 39-B 40-D HƯỚNG DẪN GIẢI CHI TIẾT Câu Chọn D Ta cos x x k2 , k Câu Chọn C Ta có: f '  x   x   0, x  nên hàm số đồng biến Câu A' C' B' M P N A C B Chọn A ABC hình chiếu MNP lên mặt phẳng  ABC  Theo cơng thức diện tích hình chiếu S /  S cos  , với S /  dt  ABC  ; S  dt  MNP  ;     ABC  ;  MNP   Suy cos   Câu 4: S/   Suy   600 Chọn A S 10 Chọn C với đường tròn lượng giác ⇒ M N điểm biểu diễn tập nghiệm phương trình lượng giác Ta thấy điểm M N giao điểm đường thẳng vng góc với trục tung điểm bản: sin x  Câu 5:  2sin x  ⇒ Đáp án C Chọn C Tập xác định: D  \ 1 Đạo hàm: y '   x  1  y '  0, x  D y(2)  ; y(3)  Max y  2;3 Câu 6: Chọn C +) Trong khơng gian vơ số đường thẳng qua M vng góc với đường thẳng a +) Chú ý: Tập hợp đường thẳng thỏa mãn qua M vng góc với đường thẳng a mặt phẳng  P  chứa M vng góc đường thẳng a Câu Chọn C Hình chóp S ABCD đáy hình chữ nhật, SA  SB  SC  SD hai mặt đối xứng mặt phẳng  SMN   SPQ  M , N , P, Q trung điểm cạnh đáy AB, CD, BC, AD Câu Chọn B Phép thử “lấy ngẫu nhiên thẻ từ 20 thẻ” nên n()  20 Gọi A biến cố “lấy thẻ ghi số chia hết cho ” Tập số tự nhiên từ đến 20 chia hết cho 3, 6,9,12,15,18 nên n( A)  Xác suất cần tìm P( A)  Câu n( A)   n() 20 10 Chọn A  S   SAB    SCD     SAB    SCD   Sx / / AB / / CD Ta có:  AB / / CD  AB  SAB ; CD  SCD      Câu 10 Chọn C 1 Thể tích khối chóp V  S h  8.6  16 3 Câu 11 Chọn B Ta thấy, với n  2, n  dãy số  un   n tính chất: un 2n  n1  nên cấp số nhân với un1 công bội q  2, u1  Câu 12 Chọn B Dùng tính chất giới hạn: cho dãy số  un  ,   lim un  a, lim   a hữu hạn lim un 0 Câu 13 Chọn C Áp dụng cơng thức tính đạo hàm tích (u.v)'  u ' v  v ' u ta ( x sin x)'  ( x)'sin x  x(sin x)'  sin x  x cos x Vậy y  x sin x  y '  sin x  x cos x Câu 14 Chọn D Gọi M  a; a  1 điểm thuộc đồ thị hàm số f  x   x  1 C  Ta f   x   x  phương trình tiếp tuyến  C  M là: y  3a  x  a   a   y  3a x  2a  1    a  1 3a    a  1  //d     2a   1 a  Vậy, điểm M thỏa mãn yêu cầu M  1;0  Câu 15 Chọn D Vì hai biến cố A B xung khắc nên A  B   Theo công thức cộng xác suất ta P  A  B   P  A   P  B  Câu 16 Chọn C Tự luận Tập xác định: D  x  y  x  x     x  1 Bảng biến thiên: Dựa vào bảng biến thiên suy hàm số điểm cực trị Trắc nghiệm Hàm số bậc trùng phương y  ax4  bx2  c hệ số a.b  điểm cực trị Vậy chọn đáp án C Câu 17 Chọn D Ta lim y  ; lim y  x x Do tiệm cận ngang đồ thị hàm số cho là: y  Câu 18 Chọn A 3 a 2018 2018 a  a 2018 a 2018  a 2018  a1009 Vậy số mũ biểu thức rút gọn Câu 19 Chọn B Ta có: lim x x   lim 2018 4x   2x  1 x  4 2019 x2  1 2  x    Câu 20 Chọn C 2019  lim x   x 2018 4x     x    x    40 2  0 20192019 2 2019   lim x  2018 x 2018 x  x 2019  1 2  x    x2 2019 1009 Từ giả thiết ta SA   ABCD  suy AC hình chiếu SC mặt phẳng  ABCD  Do  SC ,  ABCD     SC , AC   SCA Câu 21 Chọn B Từ đồ thị hàm số y  f '  x  (hình vẽ) ta suy bảng biến thiên hàm số y  f  x  Dựa vào bảng biến thiên ta nhận thấy hàm số y  f  x  đạt giá trị lớn đoạn  3;3 x0  Câu 22 Chọn B x  Ta tính y  3x      x  1 Bảng biến thiên: Dựa vào bảng biến thiên, giá trị cực đại hàm số Câu 23 Chọn B A B D C Câu 24 Chọn D - Nhánh cuối đồ thị đường lên nên a  Dựa vào đồ thị ta hàm số đạt cực trị hai điểm x  1; x   phương trình y ' nghiệm phân biệt x  1 Câu 25: Chọn D Gọi M   x; y  ảnh M 1;2  qua phép tịnh tiến theo v   2;1 , theo biểu thức tọa độ phép tịnh tiến theo v ta  x    x    M   3;3    y   y    Câu 26: Chọn D TXĐ: D y đổi dấu từ âm sang dương qua x Câu 27: Chọn B C' B' D' A' C B A D nên hàm số đạt cực tiểu x Ta V  VABCD ABC D  SCC DD d  A,  CC DD   1 V VACC DD  SCC DD d  A,  CC DD    V  3 Câu 28 Chọn D Câu 29: Chọn C 0     (  2)2018  (  2) 2019  C  2018  2019    1  (  2)2017  (  2) 2018  A sai   2017  2018    1  (  2)2018  (  2)2019  B sai   2018  2019  0     (  2)2018  (  2) 2019  D sai   2018  2019 Câu 30 Chọn C Câu 31 Chọn D Cấp số nhân  un  số hạng đầu u1 cơng bội q Do Sn  1 nên q 1 Khi Sn  n Ta : S1  S2  u1 1  q     u1  1 q u1 1  q  1 q  62   q  Vậy u5  u1 q  5.64  6480 Câu 32 Chọn C u1 1  q n  1 q  6n  Cn3Cnn 2Cn3Cn4 Cn4Cnn 1225 Cn3Cn3 2Cn3Cn4 n2 2n 840 Ta Cn3 Cn4 Xét số hạng thứ k 35 n4 2n C63 23 n n Cn3 1225 5(l ) khai triển: n Cn4 1225 Số hạng không chứa x khai triển 2k Cn4Cn4 k Vậy số hạng cần tìm 160 Câu 33 Chọn A Đặt y  x3  x  2018 x  m u  x  ( Với u  x   x3  x  2018 x  m, v  x   x ), x   x v  x Ta y  u  x  v  x   v  x  u  x  v2  x  Gọi M  x0 , y0  điểm cực trị Khi y   x0   Suy u   x0  v  x0   v  x0  u  x0   Từ y0  u  x0  u  x0    3x02  10 x0  2018 v  x0  v  x0  Điều nghĩa M   P  : y  x  10 x  2018 Vì parabol qua điểm nên  P  parabol cần tìm Do vậy: T  3.3   10   2018  1989 Câu 34 Chọn B TXĐ: y  x3  ax2  bx  c ; y  3x2  2ax  b Đồ thị hàm số qua điểm  0;1 nên c  Đồ thị hàm số điểm cực trị  2;0  Do đó: T  4a  b  c  Câu 35 Chọn C a  3b   a  3b  17    a    y  2    8  4a  2b  c    12  4a  b    b    y  2   17    23 Ta có:    ( SCD)  NM  NM CD Do   (ABMN) Mặt phẳng   chia khối chóp thành phần tích VS ABMN  VABCDNM  VS ABMN  Ta có: VS ABC  VS ACD  Đặt SN Mặt khác VS ACD VS ABCD (1) VS ABCD  x với (0  x  1) , theo Ta-let ta SD VS AMN VS ABM VS ABC  SN SD  SM SC x SA SB SM x  x  VS ABM  VS ABCD SA SB SC 2 SA SM SN x   x  VS AMN  VS ABCD SA SC SD  VS ABMN  x x2   VS ABM  VS AMN     VS ABCD (2) 2   1  x  x x 2   x  x 1   Từ (1) (2) suy  2  1   x  2 Đối chiếu điều kiện x ta Câu 36 SN SD  1 Chọn C Giả sử trồng n hàng  n  1, n   Số hàng lập thành cấp số cộng u1  cơng sai d  Theo giả thiết: Sn  3240   n  80 n  2u1   n  1 d   3240  n  n  1  6480  n2  n  6480     n  81 So với điều kiện, suy ra: n  80 Vậy tất 80 hàng Câu 37 Chọn B Giả sử M  d : y  x  , ta gọi M  a; a  1 Đường thẳng  qua M  a; a  1 hệ số góc k phương trình là: y  k ( x  a)  a  Đường thẳng  tiếp xúc với C  hệ phương trình sau nghiệm: * 3    g ( x)  x  3ax  a   x   k ( x  a)  a      3x  k 3x  k Từ M kẻ hai tiếp tuyến đến  C  phương trình (*) hai nghiệm phân biệt  hàm số y  g ( x)  2x3  3ax2  a hai điểm cực trị x1 , x2 thỏa mãn g  x1   g  x2    g ( x)  x2  6ax  hai nghiệm phân biệt x1 , x2 g  x1   g  x2   x  Xét g '  x    x  6ax    x  a a  a   a  1    Ta có:   g (0)      a  a      g (a)      a  a  Suy ra: M  1;  M 1;  Vậy: S  3 41 y1  y22  y1 y2      22  0.2     5 15 Câu 38 Chọn D A C M' B H A' C' M B'  BC  AM  BC  AM Kéo dài MH cắt BC M  Ta có:   BC   AAMM      BC  AH  BC  MM  Lại có: AM  ( ABC)  AM  ( ABC)  AM  AM  nên AMM  vuông A  a 1 1 1 1          AM  2 2 2 AH AM AM  AM AH AM  a 3a 3a  BB // MM  Do   BB  BC nên tứ giác BBCC hình chữ nhật  MM   BC Do đó: d  BB, CC    BC   2a 2a  Vậy: V  S ABC  AM  2a.a 3.a 2 Câu 39 Chọn B  x  Điều kiện xác định g  x  :    f  x  f  x   f  x  Xét phương trình f  x   f  x      f  x   Với f  x   ta nghiệm x  1 , x  3 Dựa vào đồ thị ta thấy phương trình f  x   nghiệm x0  Tập xác định hàm số y  g  x  D  1;   \ 1;3; x0   Tiệm cận ngang: Vì lim g  x   nên đồ thị hàm số y  g  x  tiệm cận ngang đường thẳng y  x   Tiệm cận đứng: lim g  x    Suy đường thẳng x  tiệm cận đứng x 1 lim g  x    Suy đường thẳng x  tiệm cận đứng x 3 lim g  x    Suy đường thẳng x  x0 tiệm cận đứng x  x0 Vậy đồ thị hàm số y  g  x  tất đường tiệm cận ngang tiệm cận đứng Câu 40 Chọn D S K A Từ C kẻ CH  AB H Từ H kẻ HK  SB K H B C + Giao tuyến hai mặt phẳng  SBC   SAB  SB   HK   SAB  +   HK  SB  HK  SB  SB  CK mà CK   SBC  + CH  SB Do góc hai mặt phẳng  SBC   SAB  CKH  30 a  SC    BC  AC  BC  SC Tam giác SBC vng C góc BSC  60 nên  +  BC  SA  SB  2a  + Tam giác SBC vuông C CK đường cao nên 1 1 a       CK  2 CK CB CS a a a + Tam giác CKH vng H (vì CH   SAB  ) CKH  30 nên CH  CK sin 30  + Tam giác ABC vuông C CH đường cao nên 1 1 1 16 15 a          CA  2 2 2 CH CA CB CA CH CB a a a 15 + Tam giác ABC vuông C nên AB  AC  BC  4a 15 4a 16a 2a   + Tam giác SAB vuông A nên SA  SB  AB  15 15 2 1 2a a a3 Thể tích khối chóp V  SA.S ABC  SA AC.BC  a  6 15 15 45 Câu 41 Chọn C a Theo đồ thị hàm số hàm số y  f ( x) ba điểm cực trị x   , x  x  a (1  a  2) Do đó, f '( x)  ba nghiệm x   , x  x  a (1  a  2) Ta có: g '( x)  f '( x) f '( f ( x) 1)  f '( x)  Xét g '( x)     f '( f ( x)  1)  (1) (2) Phương trình (1) ba nghiệm x   , x  x  a (1  a  2)    f ( x)     f ( x)    Phương trình (2)   f ( x)     f ( x)   f ( x)   a  f ( x)  a      Theo đồ thị, ta thấy f ( x)  (3) (4) (5) hai nghiệm phân biệt f ( x)  hai nghiệm phân biệt Đặt b  a  Do  a  nên  b  Xét phương trình f ( x)  b (  b  ) Đường thẳng y  b cắt đồ thị hàm số y  f ( x) hai điểm phân biệt nên phương trình (5) hai nghiệm phân biệt Xét thấy nghiệm phương trình (1), (3), (4) (5) nghiệm phân biệt Vậy phương trình g '( x)  nghiệm phân biệt Câu 42 Chọn A z S N B A M D C x Gắn hệ trục tọa độ hình vẽ Khi ta có: A  0; 0;  B  0; a;  C  a; a;0  D  a;0;0  S  0;0; a  y a  M trung điểm BC  M  ; a;0  2  a a a  M trung điểm BC  N  ;0;   MN  0;  a;  2 2 2  Do ABCD hình vng nên AC  BD SA   ABCD      SA  BD BD   ABCD    Ta có: AC  BD    BD   SAC   BD   a; a;0  pháp tuyến  SAC  SA  BD    Khi ta có: sin   cos MN, BD  MN BD a2  MN BD a a 2 25   cot     cot   cot    cot   10 sin  Lại tan .cot    tan     10 (do    90 ) Câu 43 Chọn B y  x3  mx   2m  1 x   y '  x  2mx   2m  1 Hàm số nghịch biến khoảng  0;5   y '  0, x   0;5  Do hàm số liên tục  0;5 nên y '  0, x   0;5  x  2mx   2m  1  0, x  0;5   x  1 x  2m  1  0, x  0;5  x  2m   0, x  0;5  2m   x, x  0;5  2m    m  Vì m   10;10 nên m  2;3; 4;5;6;7;8;9;10 Vậy giá trị nguyên m thỏa mãn đề Câu 44 Chọn B Không gian mẫu  số phần tử n     94 Gọi A biến cố “ chọn số chữ số chia hết cho ” Số chọn dạng abcd Số chọn chia hết cho  chia hết cho 3, nên d  2; 4; 6;8  cách chọn d Ta thấy abcd chia hết cho  (a+b+c+d) phải chia hết cho 3, xét trường hợp xảy TH1: Nếu a+b+d chia hết cho c chia hết c  {3,6,9},c cách chọn TH2: Nếu a+b+d chia cho dư c chia dư 2,nên c  {2,5,8},c cách chọn TH3: Nếu a+b+d chia cho dư c chia dư 1,nên c  {1,4,7},c cách chọn Trong trường hợp c ln cách chọn; a b cách chọn; d cách chọn Vậy : n  A   4.3.9.9 Xác suất cần tìm P  A  4.3.9.9  94 27 Câu 45 Chọn B   Ta f '  x    x  1 x  3x   x 1 x  x  3 2 g '  x    x  10  f '  x  10 x  m    x  10   x  10 x  m  1  x  10 x  m  x  10 x  m  3 Ta thấy: g '( x)  ln nghiệm x  ; hai phương trình x2  10 x  m2  x2 10x  m2   khơng nghiệm chung; phương trình:  x  10 x  m2  1  vơ nghiệm nghiệm bội chẵn Hàm số g  x  điểm cực trị  g '( x) đổi dấu lần  g '( x)  nghiệm bội lẻ hai phương trình: x2  10 x  m2  x2 10x  m2   phương trình hai nghiệm phân biệt khác 25  m  5  m   25  m     m  5  5  m  28  m    m  28 28  m   Mà m lại nguyên  m  4; 3; 2; 1;0;1; 2;3; 4  giá trị nguyên m Câu 46 Chọn D 2sin 3x  cos x  sin x  2sin 3x  sin x  cos x π   sin 3x  sin x  cos x  sin 3x  sin  x   2 3  π  π  3x  x   k 2π  x   kπ π π    x   k k  3x  π   x  π   k 2π x  π  k π     3   Vì x  π π π 2π k  k k  6  nên ta điểm biểu diễn tập nghiệm phương trình đường tròn lượng giác (Áp dụng x  a  k 2π k  n  n điểm biểu diễn đường tròn lượng giác) Câu 47 Chọn B A A M P Q B B D D G N C N C 3  VABCD  AG.S ABC   DG   AG  , S ABC  12 3 DN  Gọi Q trung điểm BM  NQ //MC  MC //  NPQ   d  MC , NP   d  MC ,  NPQ    d  M ,  NPQ    d  A,  NPQ   VANQP  3 2 AQ AP  VANBD  VANBD  VANBD  VABCD  16 16 12 64 AB AD Ta lại có: NQ  MC  , PQ  AQ  AP  AQ AP.cos 60  , 4 NP  DN  DP  VANPQ Suy S NPQ  16 3VANPQ 10  d  A,  NPQ   S NPQ  d  A,  NPQ     64  S NPQ 20 16 10 Vậy d  MC , NP   d  A,  NPQ    20 Cách khác D A P M Q A H O C K I O M K I N B B N C Gọi O tâm đáy, K trung điểm BM ta NK //  CMP  nên d  CM , NP   d  CM ,  PNK    d  O,  PNK   Từ O dựng OI  NK ABCD tứ diện nên DO  NK  NK  (DOI)   PNK    DOI  mà  PNK    DOI   IQ , Q giao điểm DO PN nên từ O dựng OH vng góc với IQ H OH   PNK   OH  d  O, ( PNK )  Xét tam giác vng OIQ ta 1 1 1 OI  MK   2   2 2 OH OI OQ 1 1      4 4  1 10  40  OH   suy OQ  OD; OD  DA2  AO  OH 20 10  d  CM , NP   10 20 Câu 48 Chọn B sin x cos x   Ta có: sin x  cos x   sin 2 x ; tan x  cot x  cos x sin x sin x   1  sin 2 x   sin x 1  Do y    1  2sin 2 x   cos x.sin x  sin x 2 sin x Có: y '  8.cos8 x  2cos8 x ; y ''  8.2.sin8x  16sin8x Câu 49 Chọn A Phương trình hồnh độ giao điểm đường thẳng d : y  x  m vàđồ thị hàm số y  x 1 : x 1 xm x 1 (1) x 1 x  1  (1)    x  mx  m   (2)  x2  mx  m   (vì x  1 khơng nghiệm phương trình (2) Để d cắt đồ thị hàm số y  x 1 điểm phân biệt A, B phương trình (2) phải nghiệm x 1 phân biệt m   2 Ta   m2  4m  nên (2) nghiệm phân biệt  (*) m   2  Gọi A( x1; x1  m), B( x2 ; x2  m) giao điểm d đồ thị hàm số y    AB  2(m2  4m  4) a Ta tính AB   12 xB  xA  Gọi I trung điểm AB I ( Ta OA2  OB  2OI  x 1 x 1 m m ; ) 2 AB AB 1 nên OA2  OB2   OI   m  1 m m m  4m     hay  Suy 4  m3 Kết hợp với điều kiện (*) ta chọn m  1 Câu 50 Chọn D S Q P A D M B N C Kẻ đường thẳng qua M // AB , cắt BC N Kẻ đường thẳng qua N // SB , cắt SB P Kẻ đường thẳng qua M // SA , cắt SD Q Suy tứ giác MNPQ thiết diện hình chóp S ABCD cắt       SCD   PQ   SCD    ABCD   CD  PQ, CD, MN đôi song song, đồng quy   ABCD      MN Mà CD / / MN  PQ / / CD.(PQ  CD),(1) Gọi H hình chiếu vng góc S lên mp  ABCD  Ta SA  SB  HA  HB Suy H thuộc đường trung trực đoạn AB  HC  HD  SC  SD  SBC  SAD, (c.c.c)  PCN  QDM  PCN  QDM , (c.g.c)  PN  QM, (2) Từ (1) (2) ta tứ giác MNPQ hình thang cân PQ SQ AM    PQ  AM  x CD SD AD Gọi E  PN  QM  ENM cân E Ta có: Mà (PN, NM)  (SB, AB)  600  ENM tam giác cạnh a EPQ tam giác cạnh x  S MNPQ  S ENM  S EPQ  Ta có: S MNPQ  a2 x2  4 2a a x 2a a    x 4 ... 2) 2 019  C  2 018  2 019    1  (  2)2 017  (  2) 2 018  A sai   2 017  2 018    1  (  2)2 018  (  2 )2 019  B sai   2 018  2 019  0     (  2)2 018  (  2) 2 019 . ..  x 2 018 4x     x    x    40 2  0 2 019  2 019 2 2 019   lim x  2 018 x 2 018 x  x 2 019  1 2  x    x2 2 019 10 09 Từ giả thi t ta có SA   ABCD  suy AC hình chi u...   2 018  2 019 Câu 30 Chọn C Câu 31 Chọn D Cấp số nhân  un  có số hạng đầu u1 công bội q Do Sn  1 nên q 1 Khi Sn  n Ta có : S1  S2  u1 1  q     u1  1 q u1 1  q  1 q 

Ngày đăng: 11/11/2018, 16:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w