Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 150 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
150
Dung lượng
6,74 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGÔ XUÂN ĐINHNGHIÊNCỨUCHẾTẠOVẬTLIỆUNANOLAITRÊNCƠSỞHẠTNANOBẠCVÀNANO CARBON ĐỊNHHƯỚNGỨNGDỤNGTRONGKHÁNGKHUẨNVÀCẢMBIẾNQUANGSERS LUẬN ÁN TIẾN SĨ KHOA HỌC VẬTLIỆU Hà Nội - 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGÔ XUÂN ĐINHNGHIÊNCỨUCHẾTẠOVẬTLIỆUNANOLAITRÊNCƠSỞHẠTNANOBẠCVÀNANO CARBON ĐỊNHHƯỚNGỨNGDỤNGTRONGKHÁNGKHUẨNVÀCẢMBIẾNQUANGSERS Chuyên ngành: Vậtliệu điện tử Mã số: 62440123 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬTLIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS LÊ ANH TUẤN PGS TS NGUYỄN VĂN QUY Hà Nội - 2017 LỜI CẢM ƠN Lời đầu tiên, xin bày tỏ lòng kính trọng biết ơn sâu sắc đến thầy hướng dẫn: PGS TS Lê Anh Tuấn PGS TS Nguyễn Văn Quy hết lòng quan tâm hướng dẫn, dìu dắt tơi suốt q trình thực luận án tiến sĩ tạo điều kiện thuận lợi, giúp đỡ kể vật chất lẫn tinh thần cho học tập cơng việc để hồn thành tốt luận án Tôi xin chân thành cảm ơn TS Trần Quang Huy, Viện Vệ sinh dịch tễ trung ương tạo điều kiện giúp đỡ thời gian thực luận án Tôi xin gửi lời cảm ơn tới Thầy Cô, anh chị, bạn đồng nghiệp Viện tiên tiến Khoa học Công nghệ Trường Đại học Bách Khoa Hà Nội giúp đỡ, tạo điều kiện để tơi hồn thành luận án Lời cuối cùng, tơi xin gửi lời cảm ơn đến tồn thể gia đình, bạn bè đồng nghiệp động viên, chia hỗ trợ để tơi hồn thành luận án Tác giả Ngô Xuân Đinh i LỜI CAM ĐOAN Tác giả xin cam đoan cơng trình nghiên riêng tác giả hướng dẫn PGS TS Lê Anh Tuấn PGS TS Nguyễn Văn Quy Các kết luận án trung thực chưa cơng bố cơng trình khác Hà nội, ngày tháng năm 2017 TM Tập thể hướng dẫn Tác giả PGS TS Lê Anh Tuấn Ngô Xuân Đinh ii MỤC LỤC Lời cảm ơn………………………………………………………………………………… i Lời cam đoan……………………………………………………………………………… ii Mục lục…………………………………………………………………………………… iii Danh mục kí hiệu chữ viết tắt………………………………………………………vii Danh mục bảng biểu………………………………………………………………………viii Danh mục hình vẽ đồ thị………………………………………………………………… ix MỞ ĐẦU Chương 1: TỔNG QUAN 1.1 Hạtnanobạc (Ag-NPs) 1.1.1 Các phương pháp tổng hợp hạtnanobạc 1.1.1.1 Phương pháp hóa học 1.1.1.2 Phương pháp vật lý 10 1.1.1.3 Phương pháp sinh học 11 1.1.2 Tính chất hạtnanobạc 16 1.1.2.1 Hoạt tính kháng khuẩn, kháng nấm, diệt virut 16 1.2.2.2 Tính chất quang 18 1.1.3 Một sốứngdụnghạtnanobạc 20 1.1.3.1 Ứngdụng cho màng lọc nước, lọc khí khử trùng 21 1.1.3.2 Ứngdụngcảmbiến 21 1.2 Các vậtliệunano carbon 24 1.2.1 Ống nano carbon (CNTs) 24 1.2.1.1 Các phương pháp chếtạo CNTs 25 1.2.1.2 Tính chất CNTs 26 1.2.1.3 Một sốứngdụng CNTs 28 1.2.2 Graphene oxit (GO) 29 1.2.2.1 Các phương pháp chếtạo GO 30 1.2.2.2 Tính chất GO 30 1.2.2.3 Một sốứngdụng GO 32 1.3 Vậtliệunanolaihạtnanobạcnano carbon (Ag-nC) 33 iii 1.3.1 Giới thiệu 33 1.3.2 Chếtạovậtliệunanolai Ag-nC 34 1.3.2.1 Chếtạovậtliệunanolai Ag/CNTs 34 1.3.2.2 Chếtạovậtliệunanolai Ag/GO 35 1.3.3 Tính chất tiềm ứngdụngvậtliệunanolai Ag-nC 38 1.3.3.1 Tính chất diệt vi sinh vậtứngdụng khử trùng 38 1.3.3.2 Tính chất quangứngdụng cho cảmbiếnSERS 39 1.3.3.3 Một số tính chất ứngdụng khác 40 1.4 Kết luận chương 42 Chương Vậtliệunanolai Ag/MWCNTs 43 2.1 Mở đầu 43 2.2 Thực nghiệm phương pháp nghiêncứu 44 2.2.1 Hóa chất dụng cụ thí nghiệm 44 2.2.2 Chếtạohạtnanobạc theo phương pháp quang hóa 44 2.2.3 Chếtạo Ag/MWCNTs theo quy trình bước sử dụng phương pháp hóa học 46 2.2.3.1 Biến tính ống nano carbon (MWCNTs) 46 2.2.3.2 Khử ion phức bạc bề mặt MWCNTs-biến tính 47 2.2.4 Các phương pháp nghiêncứu phân tích 48 2.3 Cấu trúc tính chất hạtnanobạc (Ag-NPs) 50 2.3.1 Ảnh hưởng nguồn xạ 50 2.3.2 Ảnh hưởng pH dung dịch 54 2.3.3 Ảnh hưởng chất hoạt động bề mặt 57 2.4 Cấu trúc tính chất vậtliệunanolai Ag/MWCNTs 61 2.4.1 Sự hình thành hạtnanobạc ống nano carbon biến tính (f-MWCNTs) ……………………………………………………………………………………61 2.4.2 Ảnh hưởng pH dung dịch đến hình thành vậtliệunanolai Ag/MWCNTs ……………………………………………………………………………………66 2.4.3 Ảnh hưởng chất hoạt động bề mặt đến hình thành vậtliệunanolai Ag/MWCNTs 69 Chương Vậtliệunanolai Ag/GO 73 3.1 Mở đầu 73 iv 3.2 Cấu trúc tính chất vậtliệunanolai Ag/GO chếtạo theo phương pháp quang hóa …………………………………………………………… 74 3.2.1 Thực nghiệm 74 3.2.1.1 Hóa chất thiết bị sử dụng 74 3.2.1.2 Quy trình chếtạo GO 74 3.2.1.3 Quy trình chếtạovậtliệunanolai Ag/GO 75 3.2.1.4 Các phương pháp nghiêncứu 76 3.2.2 Đặc trưng cấu trúc tính chất Ag/GO 77 3.3 Cấu trúc tính chất vậtliệulai Ag/GO chếtạo theo phương pháp thủy nhiệt … 83 3.3.1 Thực nghiệm 83 3.3.1.1 Hóa chất thiết bị sử dụng 83 3.3.1.2 Quy trình chếtạovậtliệunanolai Ag/GO 83 3.3.1.3 Các phương pháp nghiêncứu 85 3.3.2 Đặc trưng cấu trúc tính chất Ag/GO chếtạo theo phương pháp thủy nhiệt 85 3.4 Kết luận chương 90 Chương Đánh giá khả ứngdụngvậtliệunanolaikhángkhuẩncảmbiếnquangSERS 91 4.1 Mở đầu 91 4.2 Thử nghiệm ứngdụngvậtliệunanolaikhángkhuẩn 92 4.2.1 Phương pháp thực nghiệm 92 4.2.1.1 Phương pháp khoanh giấy (vòng vơ khuẩn) 92 4.2.1.2 Kĩ thuật lát cắt siêu mỏng hiển vi điện tử 92 4.2.2 Hoạt tính khángkhuẩn 94 4.2.3 Cơchếkhángkhuẩn 97 4.2.3.1 Tương tác Ag-NPs với tế bào vi khuẩn 97 4.2.3.2 Tương tác Ag/MWCNTs với tế bào vi khuẩn 100 4.2.3.3 Tương tác GO với tế bào vi khuẩn 103 4.2.3.4 Tương tác Ag/GO với tế bào vi khuẩn 105 4.3 Thử nghiệm ứngdụngvậtliệunanolaicảmbiếnquangSERS 107 4.3.1 Phương pháp thực nghiệm 107 4.3.2 Phát chất màu hữu dung dịch nước 108 v 4.3.2.1 Đặc trưng SERShạtnanobạc 108 4.3.2.2 Đặc trưng SERSvậtliệunanolai Ag/MWCNTs 109 4.3.2.3 Đặc trưng SERSvậtliệunanolai Ag/GO 111 4.3.3 Hệ số tăng cường 112 4.4 Kết luận chương 116 KẾT LUẬN VÀ KIẾN NGHỊ 117 TÀI LIỆU THAM KHẢO 119 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 136 vi DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT Ag-NPs: Hạtnanobạc Ag/MWCNTs Vậtliệulaihạtnanobạc ống nano carbon đa tường Ag/GO Vậtliệulaihạtnanobạc graphene oxit Ag-nC Vậtliệulaihạtnanobạcvậtliệunano carbon EDX Phổ tán xạ tia X TEM Hiển vi điện tử truyền qua HRTEM Hiển vi điện tử truyền qua phân giải cao SAED Nhiễu xạ điện tử chọn lọc vùng FTIR Phổ hồng ngoại biến đổi Fourier UV-vis Phổ hấp thụ dải UV ánh sáng nhìn thấy SERS Hiệu ứng tăng cường tán xạ Raman bề mặt (Surface-Enhanced Raman Scattering) CE Tăng cường hóa học ME Tăng cường trường điện từ MB Chất màu Xanh methylene E coli Vi khuẩn Escherichia coli S aureus Vi khuẩn tụ cầu vàng (Staphylococcus aureus) PVP Polyvinyl pyrrolidone XRD Nhiễu xạ tia X EF Hệ số tăng cường tán xạ Raman SD Độ lệch chuẩn tương đối vii DANH MỤC BẢNG BIỂU Bảng 1.1 Bảng tổng hợp phương pháp chếtạohạtnanobạc 14 Bảng 1.2 Tính chất tiềm ứngdụnghạtnanobạc 23 Bảng 1.3 Các phương pháp chếtạo khả ứngdụngvậtliệunanolai Ag-nC 37 Bảng 2.1 Tổng hợp điều kiện chếtạo mẫu Ag-NPs 46 Bảng 2.2 Tổng hợp điều kiện chếtạo mẫu Ag/MWCNTs 48 Bảng 2.3 So sánh thông số khả ứngdụngvậtliệunanolai Ag/MWCNTs chếtạo theo phương pháp khác 71 Bảng 3.1 Bảng tổng hợp điều kiện chếtạo mẫu Ag/GO phương pháp thủy nhiệt 84 Bảng 3.2 So sánh thông sốvậtliệunanolai Ag/GO chếtạo theo phương pháp khác 89 Bảng 4.1 Số phân tử hấp phụ bề mặt đế SERS theo nồng độ MB 113 Bảng 4.2 Hệ số tăng cường đế phủ vậtliệunano (nồng độ 10 ppm) 113 viii [34] Das M R., R K Sarma, S C Borah, R Kumari, R Saikia, A B Deshmukh, M V Shelke, P Sengupta, S Szunerits, and R Boukherroub (2013) The synthesis of citratemodified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity Colloids Surfaces B Biointerfaces, 105, pp 128–136 [35] Das M R., R K Sarma, R Saikia, V S Kale, M V Shelke, and P Sengupta (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity Colloids Surfaces B Biointerfaces, 83 (1), pp 16–22 [36] Das R., M E Ali, S B A Hamid, S Ramakrishna, and Z Z Chowdhury (2014) Carbon nanotube membranes for water purification: A bright future in water desalination Desalination, 336 (1), pp 97–109 [37] Dizaj S M., A Mennati, S Jafari, K Khezri, and K Adibkia (2015) Antimicrobial activity of carbon-based nanoparticles Adv Pharm Bull., (1), pp 19–23 [38] Dong L., A Henderson, and C Field (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants J Nanotechnol., 2012 [39] Dong R.-X., P.-T Shih, S.-Y Shen, and J.-J Lin (2013) Polymer-assisted dispersion of carbon nanotubes and silver nanoparticles and their applications RSC Adv., (44), pp 22436-22442 [40] Ducamp-Sanguesa C., R Herrera-Urbina, and M Figlarz (1992) Synthesis and characterization of fine and monodisperse silver particles of uniform shape J Solid State Chem., 100 (2), pp 272–280 [41] Dutta S., C Ray, S Sarkar, M Pradhan, Y Negishi, and T Pal (2013) Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion ACS Appl Mater Interfaces, (17), pp 8724–8732 [42] E S Snow, F K Perkins, E J Houser, S C Badescu, T L Reinecke (2005) Chemical Detection with a Single-Walled Carbon Nanotube Capacitor Science (80-.), 307 (5717), pp 1942–1945 [43] Elechiguerra J L., J L Burt, J R Morones, A Camacho-Bragado, X Gao, H H Lara, M J Yacaman (2005) Interaction of silver nanoparticles with HIV-1 J Nanobiotechnology, 3, p [44] Fan Z., R Kanchanapally, and P C Ray (2013) Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing J Phys Chem Lett., (21), pp 3813–3818 122 [45] Fayaz A M., K Balaji, M Girilal, R Yadav, P T Kalaichelvan, and R Venketesan (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria Nanomedicine Nanotechnology, Biol Med., (1), pp 103–109 [46] Fraczek A., E Menaszek, C Paluszkiewicz, and M Blazewicz (2008) Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes Acta Biomater., (6), pp 1593–1602 [47] Fu W L., S J Zhen, and C Z Huang (2013) One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection Analyst, 138, pp 3075–3081 [48] Gao C., W Li, Y Z Jin, and H Kong (2006) Facile and large-scale synthesis and characterization of carbon nanotube / silver nanocrystal nanohybrids Nanotechnology, 17, pp 2882–2890 [59] Gao W., M Majumder, L B Alemany, T N Narayanan, M a Ibarra, B K Pradhan, and P M Ajayan (2011) Engineered graphite oxide materials for application in water purification ACS Appl Mater Interfaces, (6), pp 1821–1826 [50] García-Barrasa J., J M López-de-Luzuriaga, and M Monge (2010) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications Cent Eur J Chem., (1), pp 7–19 [51] Garibaldi S., C Brunelli, V Bavastrello, G Ghigliotti, and C Nicolini (2006) Carbon nanotube biocompatibility with cardiac muscle cells Nanotechnology, 17 (2), pp 391–397 [52] Gunawan P., C Guan, X Song, Q Zhang, S S J Leong, C Tang, Y Chen, M B Chan-Park, M Chang, Wook, K Wang, and R Xu (2011) Hollow Fiber Membrane Decorated with Ag / MWNTs : Toward ffective Water ACS Nano, (12), pp 10033– 10040 [53] Gupta V K., N Atar, M L Yola, M Eryilmaz, H Torul, U Tamer, I H Boyaci, and U Zafer (2013.) A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application J Colloid Interface Sci., 406, pp 231–237 [54] Gurunathan S., J W Han, A Abdal Dayem, V Eppakayala, and J H Kim (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa Int J Nanomedicine, 7, pp 5901–5914 123 [55] Gurunathan S., J W Han, V Eppakayala, and J.-H Kim (2013) Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells Colloids Surf B Biointerfaces, 105, pp 58–66 [56] Guzman M., J Dille, and S Godet (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria Nanomedicine Nanotechnology, Biol Med., (1), pp 37–45 [57] He D., H Li, W Li, P Haghi-Ashtiani, P Lejay, and J Bai (2011) Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles Carbon N Y., 49 (7), pp 2273–2286 [58] He H., J Klinowski, M Forster, and A Lerf (1998) A new structural model for graphite oxide Chem Phys Lett., 287 (1–2), pp 53–56 [59] He H and C Gao (2011) Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization, and catalysis applications Sci China Chem., 54 (2), pp 397–404 [60] Heller D A., H Jin, B M Martinez, D Patel, B M Miller, T K Yeung, P V Jena, T Ha, S K Silvermen and M S Strano (2008) Multimodal optical sensing and analyte speci city using single-walled carbon nanotubes Nat Nanotechnol, 4, pp 114–120 [61] Holt J K., H G Park, Y Wang, M Stadermann, A B Artyukhin, C P Grigoropoulos, A Noy, and O Bakajin (2006) Fast Mass Transport Through Sub-2Nanometer Carbon Nanotubes Science (80- )., 312 (5776), pp 1034–1037 [62] Hou X., L Wang, and R Wu (2011) In Situ Synthesis of Highly Dispersed Silver Nanoparticles on Multiwalled Carbon Bull Korean Chem Soc, 32 (8), pp 2527– 2528 [63] Huang Q., J Wang, W Wei, Q Yan, C Wu, and X Zhu (2014) A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms J Hazard Mater., 283, pp 123–130 [64] Hummers W S., Jr, and R E Offeman (1958) Preparation of Graphitic Oxide J Am Chem Soc, 80 (1937), p 1339 [65] Hwang H.-J and H.-S Kim (2013) TiO2/silver/carbon nanotube nanocomposite working electrodes for high-performance dye-sensitized solar cells J Compos Mater., 48 (14), pp 1679–1690 [66] Jiang, P., S Y Li, S S Xie, Y Gao, and L Song (2004) Machinable long PVP124 stabilized silver nanowires Chem - A Eur J., 10 (19), pp 4817–4821 [67] Jung J H., H Cheol Oh, H Soo Noh, J H Ji, and S Soo Kim (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area J Aerosol Sci., 37 (12), pp 1662–1670 [68] Jung J H., G B Hwang, J E Lee, and G N Bae (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration Langmuir, 27 (16), pp 10256–10264 [69] Kang S., M Herzberg, D F Rodrigues, and M Elimelech (2008) Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24 (13), pp 6409–6413 [70] Kazmi S J., M A Shehzad, S Mehmood, M Yasar, A Naeem, and A S Bhatti (2014) Effect of varied Ag nanoparticles functionalized CNTs on its anti-bacterial activity against E coli Sensors Actuators, A Phys., 216, pp 287–294 [71] Kim D., S Jeong, and J Moon (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection Nanotechnology, 17 (16), pp 4019–4024 [72] Kim J D., H Yun, G C Kim, C W Lee, and H C Choi (2013) Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites Appl Surf Sci., 283, pp 227–233 [73] Kim J S., E Kuk, K N Yu, J H Kim, S J Park, H J Lee, S H Kim, Y K Park, Y H Park, C Y Hwang, Y K Kim, Y S Lee, D H Jeong, and M H Cho (2007) Antimicrobial effects of silver nanoparticles Nanomedicine Nanotechnology, Biol Med., (1), pp 95–101 [74] Kim K J., W S Sung, S K Moon, J S Choi, J G Kim, and D G Lee (2008) Antifungal effect of silver nanoparticles on dermatophytes J Microbiol Biotechnol., 18 (8), pp 1482–1484 [75] Kim K.-J., W S Sung, B K Suh, S.-K Moon, J.-S Choi, J G Kim, and D G Lee (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans Biometals, 22 (2), pp 235–242 [76] Koga H., T Kitaoka, and H Wariishi (2009) In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications J Mater Chem., 19 (15), pp 2135-2140 [77] Krutyakov Y A., A A Kudrinskiy, A Y Olenin, and G V Lisichkin (2008) Synthesis and properties of silver nanoparticles: advances and prospects Russ 125 Chem Rev., 77 (3), pp 233–257 [78] Kvítek L., A Panáček, J Soukupová, M Kolář, R Večeřová, R Prucek, M Holecová, and R Zbořil (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) J Phys Chem C, 112 (15), pp 5825–5834 [79] Kholoud M M., Abou El-Nour, A Eftaiha, A Al-Warthan, and R A A Ammar (2010) Synthesis and applications of silver nanoparticles Arab J Chem., (3), pp 135–140 [80] Lanlan S., S Yonghai, L Wang, G Cunlan, S Yujing, L Zhelin, and L Zhuang (2008) Ethanol-Induced Formation of Silver Nanoparticle Aggregates for Highly Active SERS Substrates and Application in DNA Detection Society, 112, pp 1415– 1422 [81] Lara H H., E N Garza-Treviño, L Ixtepan-Turrent, and D K Singh (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds J Nanobiotechnology, (1), pp 30–37 [82] Le A T., P T Huy, P D Tam, T Q Huy, P D Cam, A A Kudrinskiy, and Y A Krutyakov (2010) Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique Curr Appl Phys., 10 (3), pp 910–916 [83] Le A T., L T Tam, P D Tam, P T Huy, T Q Huy, N Van Hieu, A A Kudrinskiy, and Y A Krutyakov (2010) Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity Mater Sci Eng C, 30 (6), pp 910–916 [84] Le A.-T., T T Le, V Q Nguyen, H H Tran, D A Dang, Q H Tran, and D L Vu (2012) Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections Adv Nat Sci Nanosci Nanotechnol., (4), pp 045007-045016 [85] Lee K J., B H Jun, T H Kim, and J Joung (2006) Direct synthesis and inkjetting of silver nanocrystals toward printed electronics Nanotechnology, 17, pp 2424– 2428 [86] Lee P C and D Meisel (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols J.Phys.Chem., 86 (17), pp 3391–3395 [87] Li H.-J., A.-Q Zhang, Y Hu, L Sui, D.-J Qian, and M Chen (2012) Large-scale synthesis and self-organization of silver nanoparticles with Tween 80 as a reductant and stabilizer Nanoscale Res Lett., (1), pp 612-624 [88] Li Y., W Zhang, J Niu, and Y Chen (2013) Surface-coating-dependent dissolution, 126 aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions Environ Sci Technol., 47 (18), pp 10293– 10301 [89] Liao K., Y Lin, C W Macosko, and C L Haynes (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts ACS Appl Mater Interfaces, 3, pp 2607–2615 [90] Lin J., C He, Y Zhao, and S Zhang (2009) One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor Sensors Actuators, B Chem., 137 (2), pp 768–773 [91] Lin S., X S Zhao, Y F Li, C Liang, K Huang, Y Sheng, H Wang, C X Ye, X Xu, Y F Zhou, D Y Fan, Y F Shang, H J Yang, R Zhang, Y G Wang, and M Lei (2014) One-step synthesis of Ag–reduced graphene oxide nanocomposites and their surface-enhanced Raman scattering activity Powder Diffr., 29 (04), pp 356– 360 [92] Liu S., K Ng, R Xu, J Wei, M Tan, and Y Chen (2010) Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy R Soc Chem., 2, pp 2744–2750 [93] Liu Y., G Wu, and Y Cui (2013) Ag/CNT-catalyzed hydroamination of activated alkynes with aromatic amines Appl Organomet Chem., 27 (4), pp 206–208 [94] Lobo A O., E F Antunes, A H A Machado, C Pacheco-Soares, V J Trava-Airoldi, and E J Corat (2008) Cell viability and adhesion on as grown multi-wall carbon nanotube films Mater Sci Eng C, 28 (2), pp 264–269 [95] Loh K P., Q Bao, G Eda, and M Chhowalla (2010) Graphene oxide as a chemically tunable platform for optical applications Nat Chem., (12), pp 1015–1024 [96] Lu G., H Li, C Liusman, Z Yin, S Wu, and H Zhang (2011) Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules Chem Sci., (9), p 1817 [97] Lu L., R Sun, R Chen, C Hui, and C Ho (2008) Silver nanoparticles inhibit hepatitis B virut replication Antivir., 13, pp 253–262 [98] Luo Y., W Lu, G Chang, F Liao, and X Sun (2011) One-step preparation of Ag nanoparticle-decorated coordination polymer nanobelts and their application for enzymeless H2O2 detection Electrochim Acta, 56 (24), pp 8371–8374 [99] Lv Y., H Liu, Z Wang, S Liu, L Hao, Y Sang, D Liu, J Wang, and R I Boughton 127 (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment J Memb Sci., 331 (1–2), pp 50–56 [100] Ma J., J Zhang, Z Xiong, Y Yong, and X S Zhao (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide J Mater Chem., 21, pp 3350-3352 [101] Mao A., D Zhang, X Jin, X Gu, X Wei, G Yang, and X Liu (2012) Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity J Phys Chem Solids, 73 (8), pp 982–986 [102] Marambio-Jones C and E M V Hoek (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment J Nanoparticle Res., 12 (5), pp 1531–1551 [103] Misra R D K., B Girase, D Depan, and J S Shah (2012.) Hybrid nanoscale architecture for enhancement of antimicrobial activity: Immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes Adv Eng Mater., 14 (4), pp 93–100 [104] Mohan R., A M Shanmugharaj, and R S Hun (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity Biomed Mater Res B Appl Biomater., 96B, pp 119–126 [105] Monteiro D R., L F Gorup, S Silva, M Negri, E R de Camargo, R Oliveira, D B Barbosa, and M Henriques (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata Biofouling, 27 (7), pp 711–719 [106] Monteiro-Riviere N A., R J Nemanich, A O Inman, Y Y Wang, and J E Riviere (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes Toxicol Lett., 155 (3), pp 377–384 [107] Morones J R and J L Elechiguerra (2005) The bactericidal effect of silver nanoparticles Nanotechnology, 16 (10), pp 2346–53 [108] Nangmenyi G., W Xao, S Mehrabi, E Mintz, and J Economy (2009) Bactericidal activity of Ag nanoparticle-impregnated fibreglass for water disinfection J Water Health, (4), pp 657–663 [109] Narang J., N Chauhan, P Jain, and C S Pundir (2012) International Journal of Biological Macromolecules Silver nanoparticles / multiwalled carbon nanotube / polyaniline film for amperometric glutathione biosensor Int J Biol Macromol., 50 128 (3), pp 672–678 [110] Narkiewicz U., M Podsiadty, R Jẹdrzejewski, and I Petech (2010) Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials Appl Catal A Gen., 384, 1–2, pp 27–35 [111] Noorbakhsh F., S Rezaie, and A R Shahverdi (2011) Antifungal Effects of Silver Nanoparticle alone and with Combination of Antifungal Drug on Dermatophyte Pathogen Trichophyton Rubrum Int Conf Biosci Biochem Bioinformatics., 5, pp 364–367 [112] Ouay L B and F Stellacci (2015) Antibacterial activity of silver nanoparticles: A surface science insight Nano Today, 10 (3), pp 339-354 [113] Pal S., Y K Tak, and J M Song (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli J Biol Chem., 290 (42), pp 1712–1720 [114] Palizdar M., R Ahgababazadeh, A Mirhabibi, R Brydson, and S Pilehvari (2011) Investigation of Fe/MgO Catalyst Support Precursors for the Chemical Vapour Deposition Growth of Carbon Nanotubes J Nanosci Nanotechnol., 11 (6), pp 5345– 5351 [115] Panáček A., L Kvıtek, R Vec, R Prucek, M Kolář, R Večeřová, N Pizúrová, V K Sharma, T Nevečná, and R Zbořil (2006) Silver Colloid Nanoparticles : Synthesis , Characterization , and Their Antibacterial Activity Phys Chem B, 110, pp 16248– 16253 [116] Panigrahi S., S Kundu, S Ghosh, S Nath, and T Pal (2004) General method of synthesis for metal nanoparticles J Nanoparticle Res., (4), pp 411–414 [117] Patterson A L (1939) The Scherrer formula X-ray particle size determination Phys Rev., 56, pp 978–982 [118] Perreault F., A F de Faria, S Nejati, and M Elimelech (2015) Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters ACS Nano., (7) pp 7226 -7236 [119] Pradeep T and Anshup (2009) Noble metal nanoparticles for water purification: A critical review Thin Solid Films, 517 (24), pp 6441–6478 [120] Prasek J., J Drbohlavova, J Chomoucka, J Hubalek, O Jasek, V Adam, and R Kizek (2011) Methods for carbon nanotubes synthesis—review J Mater Chem., 21 (40), pp 15872-15884 129 [121] Prucek R., J Tuček, M Kilianová, A Panácek, L Kvvítek, J Filip, M Kolár, K Tománková, and R Zboril (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles Biomaterials, 32 (21), pp 4704–4713 [122] Pugazhenthiran N., S Anandan, G Kathiravan, N K Udaya Prakash, S Crawford, and M Ashokkumar (2009) Microbial synthesis of silver nanoparticles by Bacillus sp J Nanoparticle Res., 11 (7), pp 1811–1815 [123] Pyatenko A., K Shimokawa, M Yamaguchi, O Nishimura, and M Suzuki (2004) Synthesis of silver nanoparticles by laser ablation in pure water Appl Phys A Mater Sci Process., 79 (4), pp 803–806 [124] Qusti A H., R M Mohamed, and M Abdel Salam (2014) Photocatalytic synthesis of aniline from nitrobenzene using Ag-reduced graphene oxide nanocomposite Ceram Int., 40 (4), pp 5539–5546 [125] Rangari V K., G M Mohammad, S Jeelani, A Hundley, K Vig, S R Singh, and S Pillai (2010) Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon6 polymer nanocomposite fibers for antimicrobial applications Nanotechnology, 21 (9), p 095102 [126] Rashid M U., K H Bhuiyan, and M E Quayum (2013) Synthesis of Silver Nano Particles ( Ag-NPs ) and their uses for Quantitative Analysis of Vitamin C Tablets J Pharm, Sci., 12 (1), pp 29–33 [127] Raveendran P., J Fu, and S L Wallen (2003) Completely ‘Green’ Synthesis and Stabilization of Metal Nanoparticles J Am Chem Soc., 125(46), pp 13940–13941 [128] Ren W., Y Fang, and E Wang (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids ACS Nano, (8), pp 6425–6433 [129] Riding M J., F L Martin, J Trevisan, V Llabjani, I I Patel, K C Jones, and K T Semple (2012) Concentration-dependent effects of carbon nanoparticles in gramnegative bacteria determined by infrared spectroscopy with multivariate analysis Environ Pollut.,163, pp 226–234 [130] Rivas L., S Sanchez-Cortes, J V G Ramos, and G Morcillo (2001) Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor Langmuir, 17 (3), pp 574–577 [131] Santos E D B., E C N L Lima, C S De Oliveira, F A Sigoli, and I O Mazali 130 (2014) Fast detection of paracetamol on a gold nanoparticle–chitosan substrate by SERS Anal Methods, (11), pp 3564–3568 [132] Santhoshkumar T., A A Rahuman, A Bagavan, S Marimuthu, C Jayaseelan, A V Kirthi, C Kamaraj, G Rajakumar, A A Zahir, G Elango, K Velayutham, M Iyappan, C Siva, L Karthik, and K V B Ra (2012) Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus Exp Parasitol., 132 (2), pp 156–165, [133] Sato-Berrú R., R Redón, Vázquez-Olmos América, and M Saniger José (2009) Silver nanoparticles synthesized by direct photoreduction of metal salts Application in surface-enhanced Raman spectroscopy J Raman Spectrosc., 40 (4), pp 376–380 [134] Sathyavathi R., M B Krishna, S V Rao, R Saritha, and D Narayana Rao (2010) Biosynthesis of silver Nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics Adv Sci Lett., (2), pp 138–143 [135] Sau T K., A L Rogach, F Jäckel, T A Klar, and J Feldmann (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles Adv Mater., 22 (16), pp 1805–1825 [136] Schauerman C M., J Alvarenga, B J Landi, C D Cress, and R P Raffaelle (2009) Impact of nanometal catalysts on the laser vaporization synthesis of single wall carbon nanotubes Carbon N Y., 47 (10), pp 2431–2435 [137] Schmidt-Ott A (1988) New approaches to in situ characterization of ultrafine agglomerates J Aerosol Sci., 19 (5), pp 553–563 [138] Seo Y., J Hwang, J Kim, Y Jeong, M P Hwang, and J Choi (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles Int J Nanomedicine, (1), pp 4621–4629 [139] Sharma V K., R A Yngard, and Y Lin (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities Adv Colloid Interface Sci., 145 (1–2), pp 83–96 [140] Shen J., M Shi, B Yan, H Ma, N Li, and M Ye (2011) One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid J Mater Chem., 21 (21), pp 7795-7801 [141] Siegel J., O Kvítek, P Ulbrich, Z Kolská, P Slepička, and V Švorčík (2012) Progressive approach for metal nanoparticle synthesis Mater Lett., 89, pp 47–50 [142] Simeonidis K., S Mourdikoudis, E Kaprara, M Mitrakas, and L Polavarapu, (2016) 131 Inorganic engineered nanoparticles in drinking water treatment: a critical review Environ Sci Water Res Technol., 2, pp 43-70 [143] Sinnott S B., R Andrews, and S B Sinnott (2001) Carbon Nanotubes : Synthesis , Properties, and Applications Carbon Nanotubes: Synthesis, Properties, and Applications Solid State Mater Sci., 26 (3), pp 145–249 [144] Sintubin L., W De Windt, J Dick, J Mast, D Van Der Ha, W Verstraete, and N Boon (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles Appl Microbiol Biotechnol., 84 (4), pp 741–749 [145] Smart S K., A I Cassady, G Q Lu, and D J Martin (2006) The biocompatibility of carbon nanotubes Carbon, 44 (6), pp 1034–1047 [146] Song B., C Zhang, G Zeng, J Gong, Y Chang, and Y Jiang (2016) Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection Arch Biochem Biophys., 604, pp 167–176 [147] Song K C., Su M Lee, T S Park, and B S Lee (2009) Preparation of colloidal silver nanoparticles by chemical reduction method Korean J Chem Eng., 26 (1), pp 153–155 [148] Srivastava A., O N Srivastava, S Talapatra, R Vajtai, and P M Ajayan (2004) Carbon nanotube filters Nature Materials, (9), pp 610–614 [149] Sun Y., K Liu, J Miao, Z Wang, B Tian, L Zhang, Q Li, S Fan, and K Jiang, (2010) Highly sensitive surface-enhanced raman scattering substrate made from superaligned carbon nanotubes Nano Lett., 10 (5), pp 1747–1753 [150] Suresh A K., D A Pelletier, W Wang, J W Moon, B Gu, N P Mortensen, D P Allison, D C Joy, T J Phelps, and M J Doktycz (2010) Silver nanocrystallites: Biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria Environ Sci Technol., 44 (13), pp 5210–5215 [151] Tai Z., H Ma, B Liu, X Yan, and Q Xue (2012) Facile synthesis of Ag/GNS-g-PAA nanohybrids for antimicrobial applications Colloids Surfaces B Biointerfaces, 89 (1), pp 147–151 [152] Tsuji T., K Iryo, N Watanabe, and M Tsuji (2002) Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size Appl Surf Sci., 202 (1–2), pp 80–85 132 [153] Tuan T Q., N Van Son, H T K Dung, N H Luong, B T Thuy, N T Van Anh, N D Hoa, and N H Hai (2011) Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications J Hazard Mater., 192 (3), pp 1321–1329 [154] Turkevich J., P C Stevenson, and J Hillier (1951) A study of the nucleation and growth process in the synthesis of colloidal gold D Faraday Soc., 11, pp 55-75 [155] Tran Q H., V Q Nguyen, and A.-T Le (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives Adv Nat Sci Nanosci Nanotechnol., (3), pp 033001-033020 [156] Tran Q T., H T M Hoa, D H Yoo, T V Cuong, S H Hur, J S Chung, E J Kim, and P A Kohl (2014) Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature Sensors Actuators, B Chem., 194, pp 45–50 [157] Vidu R., M Rahman, M Mahmoudi, M Enachescu, T D Poteca, and I Opris (2014) Nanostructures: a platform for brain repair and augmentation Front Syst Neurosci., 8, pp, 91-114 [158] Vigneshwaran N., N M Ashtaputre, P V Varadarajan, R P Nachane, K M Paralikar, and R H Balasubramanya (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus Mater Lett., 61 (6), pp 1413–1418 [159] Wang H., X Qiao, J Chen, X Wang, and S Ding (2005) Mechanisms of PVP in the preparation of silver nanoparticles Mater Chem Phys., 94 (2–3), pp 449–453 [160] Wang K., J Ruan, H Song, J Zhang, Y Wo, S Guo, and D Cui (2011) Biocompatibility of Graphene Oxide Nanoscale Res Lett., (1), pp 8–15 [161] Warheit D B., B R Laurence, K L Reed, D H Roach, G A M Reynolds, and T R Webb (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats Toxicol Sci., 77 (1), pp 117–125 [162] Wiley B., T Herricks, Y Sun, and Y Xia (2004) Supporting Information Polyol Synthesis of Silver Nanoparticles : Use of Chloride and Oxygen to Promote the Formation of Single Crystal , Truncated Cubes and Tetrahedrons.Nano letters, 4(9), pp 1733-1739 [163] Wu B., Y Kuang, X Zhang, and J Chen (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications Nano Today, (1), pp 75–90 [164] Wu Y., W Xu, Y Wang, Y Yuan, and R Yuan (2013) Silver-graphene oxide 133 nanocomposites as redox probes for electrochemical determination of α-1fetoprotein Electrochim Acta, 88, pp 135–140 [165] Xiang D., Q Chen, L Pang, and C Zheng (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza A virut in vitro J Virol Methods, 178 (1–2), pp 137–142 [166] Xiao G N and S Q Man (2007) Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles Chem Phys Lett., 447 (4–6), pp 305–309 [167] Xie Y., Y Li, L Niu, H Wang, H Qian, and W Yao (2012) A novel surfaceenhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite Talanta, 100, pp 32–37 [168] Xiu Z., Q Zhang, H L Puppala, V L Colvin, and P J J Alvarez (2012) Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles Nano Lett., 12 (8), pp 4271–4275 [169] Xu W.-P., L.-C Zhang, J.-P Li, Y Lu, H.-H Li, Y.-N Ma, W.-D Wang, and S.-H Yu (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties J Mater Chem., 21 (12), p 4593 [170] Xue B., P Chen, Q Hong, J Lin, and K L Tan (2001) Growth of Pd , Pt , Ag and Au nanoparticles on carbon nanotubes Mater Chem., 11, pp 2378–2381 [171] Yanli C., Sheng-Tao Yang, Jia-Hui Liu, Erya Dong, Y W and H W Aoneng Cao, Yuanfang Liu (2011) In vitro toxicity evaluation of graphene oxide on A549 cells Toxicol Lett., 200, pp 201–210 [172] Yang C., J Mamouni, Y Tang, and L Yang (2010) Antimicrobial activity of singlewalled carbon nanotubes: Length effect Langmuir, 26 (20), pp 16013–16019 [173] Yang W., C Shen, Q Ji, H An, J Wang, Q Liu, and Z Zhang (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA Nanotechnology, 20 (8), pp 085102–085108 [174] Yen H.-J., S.-H Hsu, C.-L Tsai (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes Small, (13), pp 1553–1561 [175] Yin Y., Z.-Y Li, Z Zhong, B Gates, Y Xia, and S Venkateswaran (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process J Mater Chem., 12, pp 522–527 [176] Yu X., H Cai, W Zhang, X Li, N Pan, Y Luo, X Wang, and J G Hou (2011) 134 Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets ACS Nano, (2), pp 952–958 [177] Yun H., J D Kim, H C Choi, and C W Lee (2013) Antibacterial Activity of CNTAg and GO-Ag Nanocomposites Against Gram-negative and Gram-positive Bacteria Bull Korean Chem Soc, 34 (11), pp 3261–3264 [178] Zhang H., C Peng, J Yang, M Lv, R Liu, D He, C Fan, and Q Huang (2013) Uniform Ultrasmall Graphene Oxide Nanosheets with Low Cytotoxicity and High Cellular Uptake ACS Appl Mater Interfaces, 5, pp 1761–1767 [179] Zhang J., X Zhang, C Lai, H Zhou, and Y Zhu (2014) Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing Opt Express, 22 (18), pp 21157-21166 [180] Zhang X., J Yin, C Peng, W Hu, Z Zhu, W Li, C Fan, and Q Huang (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration Carbon N Y., 49 (3), pp 986–995 [181] Zhang Y., S Liu, L Wang, X Qin, J Tian, W Lu, G Chang, and X Sun (2012) Onepot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing RSC Adv., (2), pp 538-545 [182] Zhao Y., Z Wang, W Zhang, and X Jiang (2010.) Adsorbed Tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules Nanoscale, (10), pp 2114–2119 [183] Zhou H., D Yang, N P Ivleva, N E Mircescu, R Niessner, and C Haisch (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles Anal Chem., 86 ( 3), pp 1525–1533 [184] Zhu Y., S Murali, W Cai, X Li, J W Suk, J R Potts, and R S Ruoff (2010) Graphene and graphene oxide: Synthesis, properties, and applications Adv Mater., 22 (35), pp 3906–3924 [185] Zou J., Y Xu, B Hou, D Wu, and Y Sun (2007) Controlled growth of silver nanoparticles in a hydrothermal process China Particuology, (3), pp 206–212 [186] Zhengtang L., Y Lu, L A Somers, and A T C Johnson (2009) High Yield Preparation of Macroscopic Graphene Oxide Membranes J Am Chem Soc, 131, pp 898-899 135 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN Các cơng trình cơng bố tạp chí quốc tế Nguyen Thi Lan, Do Thi Chi, Ngo Xuan Dinh, Nguyen Duy Hung, Hoang Lan, Pham Anh Tuan, Le Hong Thang, Nguyen Ngoc Trung, Nguyen Quang Hoa, Tran Quang Huy, Nguyen Van Quy, Thanh-Tung Duong , Vu Ngoc Phan , Anh-Tuan Le (2014) Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization Journal of Alloys and Compounds 615, pp 843–848 SCI, IF: 2.999 Ngo Xuan Dinh, Nguyen Van Quy, Tran Quang Huy, and Anh-Tuan Le (2015) Decoration of Silver Nanoparticles on Multiwalled Carbon Nanotubes: Antibacterial Mechanism and Ultrastructural Analysis Journal of Nanomaterials, Article ID 814379, 11 pages SCI, IF: 1.644 Ngo Xuan Dinh, Do Thi Chi, Nguyen Thi Lan, Hoang Lan, Hoang Van Tuan, Nguyen Van Quy, Vu Ngoc Phan, Tran Quang Huy, Anh-Tuan Le (2015) Waterdispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity Appl Phys A, 119, pp 85–95 SCI, IF: 1.704 Ngo Xuan Dinh, Tran Quang Huy, Le Van Vu, Le Thi Tam, Anh-Tuan Le (2016) Multiwalled carbon nanotubes/silver nanocomposite as effective SERS platform for detection of methylene blue dye in water Journal of Science: Advanced Materials and Devices, 1, pp 84-89 Cơng trình cơng bố kỷ yếu hội nghị nước Ngo Xuan Dinh, Nguyen Van Quy, Tran Quang Huy, Vu Ngoc Phan, Le Anh Tuan (2014) Synthesis and Characterization of Silver Nanoparticles-decorated Carbon Nanotubes (Ag/CNTs) Nanohybrids Proceeding of The 2nd International Conference on Advanced Materials and Nanotechnology (ICAMN2014), Hanoi University of Science and Technology, pp 477-481 Ngô Xuân Đinh, Nguyễn Văn Quy, Vũ Ngọc Phan, Lê Thị Tâm, Lê Anh Tuấn (2015) Nghiêncứu điều khiển kích thước hình dạng hạtnanobạc sử dụng ánh sáng chất hoạt động bề mặt Kỷ yếu Hội nghị Vật lý chất rắn Khoa học vậtliệu toàn quốc lần (SPMS2015), Đại Học Khoa học tự nhiên-ĐH Quốc Gia Hồ Chí Minh, pp 502-505 136 ... DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGÔ XUÂN ĐINH NGHIÊN CỨU CHẾ TẠO VẬT LIỆU NANO LAI TRÊN CƠ SỞ HẠT NANO BẠC VÀ NANO CARBON ĐỊNH HƯỚNG ỨNG DỤNG TRONG KHÁNG KHUẨN VÀ CẢM BIẾN QUANG SERS. .. đó, định hướng nghiên cứu luận án Nghiên cứu chế tạo vật liệu nano lai sở hạt nano bạc nano carbon định hướng ứng dụng kháng khuẩn cảm biến quang SERS Mục tiêu luận án Với đề tài nghiên cứu. .. dự kiến trên, mục tiêu luận án đặt là: - Nghiên cứu chế tạo vật liệu nano lai Ag-nC khảo sát tính chất chúng - Định hướng ứng dụng hệ vật liệu nano lai chế tạo kháng khuẩn cảm biến quang SERS Nội