1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual fundamentals of electric circuits 3rd edition chapter09

80 245 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 80
Dung lượng 730,55 KB

Nội dung

If the input voltage is vt = 10 cos 2t find the currrent flowing through the circuit... A series RL circuit is connected to a 110-V ac source.. Find current Io in the circuit shown in Fi

Trang 1

Given the sinusoidal voltage v(t) = 50 cos (30t + 10o) V, find: (a) the amplitude Vm,(b)

the period T, (c) the frequency f, and (d) v(t) at t = 10 ms

(a) What is the amplitude of the current?

(b) What is the angular frequency?

(c) Find the frequency of the current

Is(2 ms) = 8 cos(( 500 π )( 2 × 10- 3) − 25 ° )

= 8 cos(π − 25°) = 8 cos(155°)

= -7.25 A

Trang 2

(a) Express v = 8 cos(7t = 15o) in sine form

(b) Convert i = -10 sin(3t - 85o) to cosine form

Chapter 9, Solution 4

(a) v = 8 cos(7t + 15°) = 8 sin(7t + 15° + 90°) = 8 sin(7t + 105°)

(b) i = -10 sin(3t – 85°) = 10 cos(3t – 85° + 90°) = 10 cos(3t + 5°)

Trang 3

For the following pairs of sinusoids, determine which one leads and by how much

(a) v(t) = 10 cos(4t - 60o

) and i(t) = 4 sin (4t + 50o

) (b) v1(t) = 4 cos(377t + 10o) and v2(t) = -20 cos 377t

(c) x(t) = 13 cos 2t + 5 sin 2t and y(t) = 15 cos(2t -11.8o)

Chapter 9, Solution 6

(a) v(t) = 10 cos(4t – 60°)

i(t) = 4 sin(4t + 50°) = 4 cos(4t + 50° – 90°) = 4 cos(4t – 40°)

Thus, i(t) leads v(t) by 20°

Thus, y(t) leads x(t) by 9.24°

d

df

φ

= φ + φ

= φ + φ

Trang 4

Calculate these complex numbers and express your results in rectangular form:

10

j

+

− (c) 10 + (8 ∠ 50o) (5 – j12)

Chapter 9, Solution 8

(a)

4 j 3

45 15

°

∠ + j2 =

°

°

∠ 53.13 - 5

45 15

+ j2 = 3∠98.13° + j2 = -0.4245 + j2.97 + j2

= -0.4243 + j4.97

(b) (2 + j)(3 – j4) = 6 – j8 + j3 + 4 = 10 – j5 = 11.18∠-26.57°

j4) - j)(3 (2

20 - 8 +

°

+ j12 5 -

10

°

∠ 26.57 - 11.18

20 - 8

+

144 25

) 10 )(

12 j 5 - +

= 0.7156∠6.57° − 0.2958 − j0.71 = 0.7109 + j0.08188 − 0.2958 − j0.71

= 0.4151 − j0.6281

(c) 10 + (8∠50°)(13∠-68.38°) = 10+104∠-17.38°

= 109.25 – j31.07

Trang 5

Evaluate the following complex numbers and leave your results in polar form:

j j

o

2

60 3 8 6

(b)

) 5 ( ) 6

2

(

) 50 35 ( 60

10

(

j j

o o

+

− +

30

5

(

) 261 7 j 13 7 )(

30 5 ( ) 7392 0 j 1197 1 8 j 6 )(

3 2

Trang 6

Find the phasors corresponding to the following signals:

Trang 7

Let X = 8 ∠ 40o and and Y = 10 ∠ − 30o Evaluate the following quantities and express your results in polar form:

(a) (X + Y)X* (b) (X -Y)* (c) (X + Y)/X

Chapter 9, Solution 12

Let X = 8∠40° and Y = 10∠-30° Evaluate the following quantities and express

your results in polar form

45 39 31 118 ) 40 8 )(

55 0 789 14 (

) 40 8 )(

142 0 j 788 14 (

Trang 8

91 77 318 14 17

7 2134 06

246

9 6944 24186

) 5983 10 96 16 )(

84 67

(

) 80 60 )(

80 56 138 82 231 116

.

62

(

j j

j j

j j

j

= +

= +

+

− +

+

(c) ( )

221 4

256 24

139 46

.

338

) 38 12 923 16 )(

86 126 20

( ) 120 260

( 4

j

j j

Trang 9

Evaluate these determinants:

(a)

j

j j

+

− +

1 5

3 2 6

16

10 4 30

20

(c)

j j

j j

1

0 1

Chapter 9, Solution 15

(a)

j 1 - 5 -

3 j 2 6 j 10

+

− +

16

10 - 4 - 30 20

0 j j 1

j 1 j 1

j 1 j

0 j j 1

Trang 10

Transform the following sinusoids to phasors:

The phasor form is 5∠-100°

(c) 4 cos(2t) + 3 sin(2t) = 4 cos(2t) + 3 cos(2t – 90°)

The phasor form is 4∠0° + 3∠-90° = 4 – j3 = 5∠-36.87°

Trang 11

Obtain the sinusoids corresponding to each of the following phasors:

v2 = 10 cos(40t + 53.13°)

(c) i1( t ) = 2.8 cos(377t – π/3)

(d) I2 = -0.5 – j1.2 = 1.3∠247.4°

) t (

i2 = 1.3 cos(103t + 247.4 °)

Trang 12

Using phasors, find:

(a) 3cos(20t + 10º) – 5 cos(20t- 30º)

Therefore, 3 cos(20t + 10°) – 5 cos(20t – 30°) = 3.32 cos(20t + 114.49°)

(b) 40∠-90° + 30∠-45° = -j40 + 21.21 – j21.21

= 21.21 – j61.21

= 64.78∠-70.89°

Therefore, 40 sin(50t) + 30 cos(50t – 45°) = 64.78 cos(50t – 70.89°)

(c) Using sinα = cos(α − 90°),

20∠-90° + 10∠60° − 5∠-110° = -j20 + 5 + j8.66 + 1.7101 + j4.699

= 6.7101 – j6.641 = 9.44∠-44.7°

Therefore, 20 sin(400t) + 10 cos(400t + 60°) – 5 sin(400t – 20°)

= 9.44 cos(400t – 44.7°)

Chapter 9, Problem 20

A linear network has a current input 4cos(ω t + 20º)A and a voltage output 10

cos(ω t +110º) V Determine the associated impedance

Trang 13

Simplify the following:

(a) f(t) = 5 cos(2t + 15(º) – 4sin(2t -30º)

324 8 )

t t

565 5 )

t t

v ( ) 4 2 ( )

10

o

V j

V V j

V

F = 10 + 4 − 2 , ω = 5 , = 20 ∠ − 30

ω ω

o

89 33 4 454 ) 10 j 32 17 )(

4 20 j 10 ( V 4 0 j V 20

Trang 14

(a) v = 50 cos( ω t + 30o) + 30 cos(ω t + 90o)V

v t

0 10

j = ∠ ° ω = ω

+ V

V

10 ) j 1 ( − =

V

°

= +

=

= 5 j 5 7 071 45 j

90 10 ( 20 j

4 5

ω + +

4 5 4 j

V

°

= +

°

= 3 43 - 110 96

3 j 5

80 - 20

V

Therefore, v(t) = 3.43 cos(4t – 110.96°)

Trang 15

Using phasors, determine i(t) in the following equations:

(a) 2 3 ( ) 4 cos( 2 45o)

t t

i dt

di dt

i

Chapter 9, Solution 25

(a)

2 ,

45 - 4 3 2j ω I + I = ∠ ° ω =

°

= + j 4 ) 4 - 45 3

°

13 53 5

45 - 4 j4 3

45 - 4 I Therefore, i(t) = 0.8 cos(2t – 98.13°)

(b)

5 ,

22 5 6 j j

°

56 26 708 6

22 5 3

j 6

22 5

Assuming that the value of the integral at t = - ∞ is zero, find i(t) using the phasor

method

Chapter 9, Solution 26

2 ,

0 1 j 2

ω + +

1 2 j

1 2 2

I

°

= +

= 0 4 - 36 87

5 1 j 2

1

I

Therefore, i(t) = 0.4 cos(2t – 36.87°)

Trang 16

A parallel RLC circuit has the node equation

10 - 110 j

100 50

ω +

380 (

110 R

) t ( v ) t (

Trang 17

What is the instantaneous voltage across a 2- µ F capacitor when the current through it is

i =4 sin(106t +25o) A?

Chapter 9, Solution 29

5 0 j - ) 10 2 )(

10 ( j

1 C

j

1

6 -

×

= ω

Trang 18

A series RLC circuit has R = 80 Ω , L = 240 mH, and C = 5 mF If the input voltage is v(t) = 10 cos 2t find the currrent flowing through the circuit

Trang 19

A series RL circuit is connected to a 110-V ac source If the voltage across the resistor is

85 V, find the voltage across the inductor

Chapter 9, Solution 33

2 L

1

ω

= ω

5 (

1

3

Trang 20

Find current i in the circuit of Fig 9.42, when vs(t) = 50 cos200t V

in

V I

Trang 21

In the circuit of Fig 9.43, determine i Let vs = 60 cos(200t - 10o)V

100 200 mH

j x

x j L

⎯→

500 200

10 10

1 1

F

x x j C

⎯→

ω µ

1

t

Trang 22

Determine the admittance Y for the circuit in Fig 9.44

Trang 23

Find i(t) and v(t) in each of the circuits of Fig 9.45

3 ( j

1 C

j

1 F

6

1

=

= ω

j 4

2 j -

4 ( j

1 C

j

1 F

12

1

=

= ω

⎯→

12 j ) 3 )(

4 ( j L j H

0 50

Z

V I

Hence, i(t) = 10 cos(4t + 36.87°) A

= ( 50 0 ) 41 6 33 69 j12

8

12 j

V

Hence, v(t) = 41.6 cos(4t + 33.69°) V

Trang 24

For the circuit shown in Fig 9.46, find Zeg and use that to find current I Let ω = 10 rad/s

Trang 25

In the circuit of Fig 9.47, find io when:

(a) ω = 1 rad/s (b) ω = 5 rad/s

(c) ω = 10 rad/s

Figure 9.47

For Prob 9.40.

Trang 26

(a) For ω = 1 ,

j ) 1 )(

1 ( j L j H

20 j - ) 05 0 )(

1 ( j

1 C

j

1 F

05

40 j - j ) 20 j -

||

2

− +

= +

0 4 j0.802

1.98

0 4

V I

Hence, io( t ) = 1.872 cos(t – 22.05°) A

(b) For ω = 5 ,

5 j ) 1 )(

5 ( j L j H

4 j - ) 05 0 )(

5 ( j

1 C

j

1 F

05

4 j - 5 j ) 4 j -

||

2 5

− +

= +

0 4 j4

1.6

0 4

V I

Hence, io( t ) = 0.89 cos(5t – 69.14°) A

(c) For ω = 10 ,

10 j ) 1 )(

10 ( j L j H

2 j - ) 05 0 )(

10 ( j

1 C

j

1 F

05

4 j - 10 j ) 2 j -

||

2 10

− +

= +

0 4 9

j 1

0 4

V I

Hence, io( t ) = 0.4417 cos(10t – 83.66°) A

Trang 27

Find v(t) in the RLC circuit of Fig 9.48

1 ( j L j H

j - ) 1 )(

1 ( j

1 C j

1 F

1 j - 1 ) j -

||

) j 1 (

=

Z

j 2

j 2

) 10 )(

j 1 ( ) j 1 ( ) j 1 )(

j

V

Thus, v(t) = 6.325 cos(t – 18.43 °) V

Trang 28

Calculate v o(t) in the circuit of Fig 9.49

100 j - ) 10 50 )(

200 ( j

1 C

j

1 F

×

= ω

⎯→

⎯ µ

20 j ) 1 0 )(

200 ( j L j H

1

20 j 40 j2 - 1

j100 - j100 50

) (50)(-j100 -j100

70

20 j ) 0 60 ( 20 j 40 30 20 j

20 j

o

V

Thus, vo( t ) = 17.14 sin(200t + 90 °) V

or vo( t ) = 17.14 cos(200t) V

Trang 29

Find current Io in the circuit shown in Fig 9.50

2 j ) 10 10 )(

200 ( j L j mH

j - ) 10 5 )(

200 ( j

1 C

j

1 mF

×

= ω

⎯→

4 0 j 55 0 10

j 3 5 0 j 25 0 j 3

1 2 j

1 4

1

=

+ +

=

− + +

=

Y

865 0 j 1892 1 4 0 j 55 0

1 1

°

= +

°

= +

°

865 0 j 1892 6

0 6 5

0 6

Z I

Thus, i(t) = 0.96 cos(200t – 7.956 °) A

Trang 30

Find current Io in the network of Fig 9.52

1 =

j2 - 2

j4 - j4 2

||

-j2) ( 4 j

Z

j 1

j10 - ) 0 5 ( 3 j 1 2 j -

2 j -2

1

1

Z I

= +

10 - j 1

j10 - j - 1

j - j2

2

-j2 -

Trang 31

j - ) 1 0 )(

10 ( j

1 C

j

1 F

1

10 ( j L j H

2

2 j 4

8 j 2 j

j1.6 0.8s 2 1

Z Z

Z I

) 40 5 )(

43 63 789 1 (

o

I

Thus, io( t ) = 2.325 cos(10t + 94.46 °) A

Trang 32

In the circuit of Fig 9.54, determine the value of is(t)

= + +

+

− +

63 52 854 10

5 626

8 j 588 4 2

5 4

j 20 10 j

) 4 j 20 ( 10 j 2

Trang 33

Given that vs(t) = 20 sin(100t - 40o

) in Fig 9.55, determine ix(t)

Figure 9.55

For Prob 9.48.

Chapter 9, Solution 48

Converting the circuit to the frequency domain, we get:

We can solve this using nodal analysis

A ) 4 9 t 100 sin(

j 30

29 24 643

.

15

I

29 24 643 15 03462 0 j 12307

.

0

40 2

V

40 2 ) 01538 0 j 02307 0 05

0 V 20 j

0 V 10

1

° +

− +

Trang 34

Find vs(t) in the circuit of Fig 9.56 if the current ix through the 1- Ω resistor is 0.5 sin

) j 1 )(

2 j ( 2 ) j 1 (

||

2 j 2

+

− +

=

− +

=

Z

I I

I

j 1

2 j j 1 2 j

2 j

1 0 5 0

I

4 j

j 1 2

j

j 1

j 1

Trang 35

Determine vx in the circuit of Fig 9.57 Let is(t) = 5 cos(100t + 40o)A

cos(

50

v

50 50

I

20

V

50 5 2 40 5 2 j 40 5 10 j 20

Trang 36

If the voltage vo across the 2- Ω resistor in the circuit of Fig 9.58 is 10 cos2t V, obtain

2 ( j

1 C

j

1 F

1

2 ( j L j H

5

The current I through the 2- Ω resistor is

4 j 3 2 j 5 j 1

+ +

I

Therefore,

= ) t (

is 25 cos(2t – 53.13 °) A

Trang 37

If Vo = 8 ∠ 30oV in the circuit of Fig 9.59, find I .

5 j 5 j 5

25 j 5 j

||

+

= +

s 2 1

1

4 5

2 j 5 12

10

I I

I Z Z

Z I

=

= +

=

) 5 2 j 5 2

5 2 ( j 5

4 30

+

= +

) j 5 )(

30 8

Trang 38

Find Io in the circuit of Fig 9.60

4 x 6 j Z , 1 j 1 45 6569 5

90 8 4 j 4

4 x

=

5 1 j 5 1 4 j 4

) 5 1 j 5 9 ( ) 10 Z //(

2

A 67 21 873 8 33 8 7623 6

30 60 Z

30 60

Trang 39

In the circuit of Fig 9.61, find Vs if Io= 2 ∠ 0o

A

Figure 9.61

For Prob 9.54.

Chapter 9, Solution 54

Since the left portion of the circuit is twice as large as the right portion, the

equivalent circuit is shown below

) j 1 ( 2 ) j 1 (

o

V

) j 1 ( 4

V

) j 1 ( 6

21

Vs

Trang 40

* Find Z in the network of Fig 9.62, given that Vo = 4 ∠ 0oV

j

4 8 j

o

I

j 8 j4

-) 8 j ( (-j0.5) j4

-) 8 j (

1

I

5 0 j 8

j 8

) 8 j ( 2

j - 2

j 8 12 j20

3 j26

25 261 31 26 2

1 j 2

3

j26 - 4

+

Vo

Trang 41

At ω = 377 rad/s, find the input impedance of the circuit shown in Fig 9.63

2 ⎯ ⎯→ j ω L = j

j C

2 1 j 6 2 j 2 2 j

) j 2 ( 2 j 1 ) j 2

− +

=

− +

=

S 1463 0 j 3171

Trang 42

) 57 4 016 5 )(

90 5 ( ) 4 0 j 5 ( 5 j

Zin

= 2.707+j2.509 Ω

Trang 43

Obtain Zin for the circuit in Fig 9.67

Figure 9.67

For Prob 9.60.

Chapter 9, Solution 60

Ω +

=

− +

+

= +

− + +

1 5 j

1 2 j 1

1 j 1

1 1

Z

4 0 j 8 0 ) 3 0 j 1 0 ( ) 2 0 j - ) 4 0 j 2 0 ( ) 5 0 j 5 0 ( 1

eq

=

− + +

− + +

1

eq

Trang 44

For the circuit in Fig 9.69, find the input impedance Zin at 10 krad/s

10 10 ( j

1 C

j

1 F

×

×

= ω

⎯→

⎯ µ

50 ) 50 )(

0 1

=

V

) 50 )(

2 ( ) 100 j 20 j 50 )(

0 1 (

V

80 j 150 100 80 j 50

in in

Trang 45

For the circuit in Fig 9.70, find the value of ZT⋅.

450 j 200 z

, 333 13 j 30 15

j

450 j 200

z

45 j 20 10

300 j 150 j 200

z

32

− +

j

8

Z

821 3 j 70 21 )

29 j 40

) 16 j 10 )(

333 13 j 30 ( )

Trang 46

30

I

5 j 19 2

j 6

) 8 j 6 ( 10

||

) 6 j 4 ( 2

Z

2 j 7

) 4 j 3 )(

6 j 4 ( 2

+

− +

10 120

T

Z

V

Trang 47

For the circuit in Fig 9.73, calculate ZT and Vab

Figure 9.73

For Prob 9.66.

Trang 48

) j 12 ( 145

170 5

j 60

) 10 j 40 )(

5 j 20 ( ) 10 j 40 (

||

) 5 j 20 (

90 60

I

j 12

2 j 8 5 j 60

10 j 40

+

= +

+

=

I I

I

j 12

j 4 5 j 60

5 j 20

= +

=

2 1

I I

V

j 12

40 j 10 j

12

) 40 j (160 -

+ + +

+

=

I I

V

145

j)(150) -12

( j 12

150 -

ab

+

= +

=

) 76 97 25 4 )(

24 175 457 12 (

Trang 49

At ω = 103 rad/s find the input admittance of each of the circuits in Fig 9.74

10 ( j

1 C

j

1 F

5

×

= ω

⎯→

⎯ µ

) 80 j 60 (

||

20 j 60

Z

60 j 60

) 80 j 60 )(

20 j ( 60

− +

= 63 33 j 23 33 67 494 20 22in

Z

=

=

in in

10 ( j

1 C

j

1 F

×

= ω

⎯→

⎯ µ 20 60

||

) 10 j 40 (

||

20 50 j -

Z

10 j 60

) 10 j 40 )(

20 ( 50 j -

+ +

Z

=

=

in in

1

Z

Y 19.7 ∠74.56° mS = 5.24 + j18.99 mS

Trang 50

Determine Yeq for the circuit in Fig 9.75

Figure 9.75

For Prob 9.68.

Chapter 9, Solution 68

4 j -

1 j 3

1 2 j 5

Trang 51

Find the equivalent admittance Yeq of the circuit in Fig 9.76

Figure 9.76

For Prob 9.69.

Chapter 9, Solution 69

) 2 j 1 ( 4

1 2 j -

1 4

1 1

o

+

= +

=

Y

6 1 j 8 0 5

) 2 j 1 )(

4 ( 2 j 1

Y

) 6 0 j 8 0 ( ) 333 0 j ( ) 1 ( 6 0 j 8 0

1 3

j -

1 1

1 1

o

+ + +

=

− + +

=

′ 1 . 8 j 0 . 933 2 . 028 27 . 41 1

o

Y

2271 0 j 4378 0 41 27 - 4932 0

Y

773 4 j 4378 0 5 j

Y

97 22

773 4 j 4378 0 5 0 773 4 j 4378 0

1 2

1 1eq

− +

= +

+

=

Y

2078 0 j 5191 0 1eq

2078 0 j 5191 0

eq

Trang 52

Find the equivalent impedance of the circuit in Fig 9.77

Figure 9.77

For Prob 9.70.

Trang 53

Make a delta-to-wye transformation as shown in the figure below

9 j 7 5

j 15

) 10 j 15 )(

10 ( 15 j 10 10 j 5

) 15 j 10 )(

10 j -

+

= + +

) 15 j 10 )(

5 (

) 10 j - )(

5 (

||

) 2

||

) 5 3 j 5 6 ( 9 j 7

Z

5 4 j 5 13

) 8 j 7 )(

5 3 j 5 6 ( 9 j 7

− +

Trang 54

Obtain the equivalent impedance of the circuit in Fig 9.78

Figure 9.78

For Prob 9.71.

Trang 55

We apply a wye-to-delta transformation

j 1 2 j

2 j 2 2

j

4 j 2 j 2

Z

j 1 2

2 j 2

Z

j2 -2 j -

2 j 2

Z

8 0 j 6 1 3 j 1

) j 1 )(

4 j ( ) j 1 (

||

4 j

) j 1 )(

1 ( ) j 1 (

=

Z

6 0 j 2 2

1 2

j 2 -

1 2 j -

1 1

Trang 56

Calculate the value of Zab in the network of Fig 9.79

Figure 9.79

For Prob 9.72.

Trang 57

Transform the delta connections to wye connections as shown below

6 j - 18 j -

10 20 20

) 20 )(

20 (

50

) 10 )(

20 (

20 (

R3

4 4) j6 (j2

||

) 8 2 j ( j2

Z

j4) (4

||

) 2 j 8 ( j2 4

Z

j2 - 12

) 4 j j2)(4 (8

j2 4

ab

− +

+ +

=

Z

4054 1 j 567 3 j2 4

Trang 58

Determine the equivalent impedance of the circuit in Fig 9.80

Figure 9.80

For Prob 9.73.

Chapter 9, Solution 73

Transform the delta connection to a wye connection as in Fig (a) and then

transform the wye connection to a delta connection as in Fig (b)

Trang 59

8 4 j - 10 j 6 j 8 j 8 j

− +

=

Z

-j4.81

Z

4 6 j j10

64 - 10 j

) 8 j )(

8 j (

Z

= +

+ +

+ +

2

6 9 j 4 46 ) 4 6 j )(

8 4 j 2 ( ) 4 6 j )(

8 4 j 4 ( ) 8 4 j 4 )(

8 4 j 2

25 7 j 5 1 4

6 j

6 9 j 4 46

Z

688 6 j 574 3 8 4 j 4

6 9 j 4 46

6 9 j 4 46

12 j 574 3

) 88 61 583 7 )(

90 6 (

j7.25) -j4)(1.5

20 j 727 1

) 07 79 11 9 )(

90 12 (

||

4 j -

||

)

||

6 j

) 5673 2 j 7494 0 (

||

) 3716 3 j 7407 0 (

Trang 60

Design an RL circuit to provide a 90o

leading phase shift

Chapter 9, Solution 74

One such RL circuit is shown below

We now want to show that this circuit will produce a 90° phase shift

) 3 j 1 ( 4 2 j 1

20 j 20 - 40

j 20

) 20 j 20 )(

20 j ( ) 20 j 20 (

+

= +

=

Z

) j 1 ( 3

1 3 j 6

3 j 1 ) 0 1 ( 12 j 24

12 j 4

+

= +

Z

Z V

= +

3

j ) j 1 ( 3

1 j 1

j 20

j 20

20 j

Trang 61

Design a circuit that will transform a sinusoidal voltage input to a cosinusoidal voltage output

Chapter 9, Solution 75

Since ) cos( ω t ) = sin( ω t + 90 ° , we need a phase shift circuit that will cause the output to lead the input by 90° This is achieved by the RL circuit shown

below, as explained in the previous problem

This can also be obtained by an RC circuit

Chapter 9, Problem 76

For the following pairs of signals, determine if v1 leads or lags v2 and by how much

(a) v1 = 10 cos(5t - 20o

), v2 = 8 sin5t (b) v1 = 19 cos(2t - 90o

), v2 = 6 sin2t (c) v1 = - 4 cos10t , v2 = 15 sin10t

Ngày đăng: 13/09/2018, 13:31

TỪ KHÓA LIÊN QUAN

w