If the input voltage is vt = 10 cos 2t find the currrent flowing through the circuit... A series RL circuit is connected to a 110-V ac source.. Find current Io in the circuit shown in Fi
Trang 1Given the sinusoidal voltage v(t) = 50 cos (30t + 10o) V, find: (a) the amplitude Vm,(b)
the period T, (c) the frequency f, and (d) v(t) at t = 10 ms
(a) What is the amplitude of the current?
(b) What is the angular frequency?
(c) Find the frequency of the current
Is(2 ms) = 8 cos(( 500 π )( 2 × 10- 3) − 25 ° )
= 8 cos(π − 25°) = 8 cos(155°)
= -7.25 A
Trang 2(a) Express v = 8 cos(7t = 15o) in sine form
(b) Convert i = -10 sin(3t - 85o) to cosine form
Chapter 9, Solution 4
(a) v = 8 cos(7t + 15°) = 8 sin(7t + 15° + 90°) = 8 sin(7t + 105°)
(b) i = -10 sin(3t – 85°) = 10 cos(3t – 85° + 90°) = 10 cos(3t + 5°)
Trang 3For the following pairs of sinusoids, determine which one leads and by how much
(a) v(t) = 10 cos(4t - 60o
) and i(t) = 4 sin (4t + 50o
) (b) v1(t) = 4 cos(377t + 10o) and v2(t) = -20 cos 377t
(c) x(t) = 13 cos 2t + 5 sin 2t and y(t) = 15 cos(2t -11.8o)
Chapter 9, Solution 6
(a) v(t) = 10 cos(4t – 60°)
i(t) = 4 sin(4t + 50°) = 4 cos(4t + 50° – 90°) = 4 cos(4t – 40°)
Thus, i(t) leads v(t) by 20°
Thus, y(t) leads x(t) by 9.24°
d
df
φ
= φ + φ
= φ + φ
Trang 4Calculate these complex numbers and express your results in rectangular form:
10
j
+
− (c) 10 + (8 ∠ 50o) (5 – j12)
Chapter 9, Solution 8
(a)
4 j 3
45 15
−
°
∠ + j2 =
°
∠
°
∠ 53.13 - 5
45 15
+ j2 = 3∠98.13° + j2 = -0.4245 + j2.97 + j2
= -0.4243 + j4.97
(b) (2 + j)(3 – j4) = 6 – j8 + j3 + 4 = 10 – j5 = 11.18∠-26.57°
j4) - j)(3 (2
20 - 8 +
°
∠
+ j12 5 -
10
°
∠ 26.57 - 11.18
20 - 8
+
144 25
) 10 )(
12 j 5 - +
−
= 0.7156∠6.57° − 0.2958 − j0.71 = 0.7109 + j0.08188 − 0.2958 − j0.71
= 0.4151 − j0.6281
(c) 10 + (8∠50°)(13∠-68.38°) = 10+104∠-17.38°
= 109.25 – j31.07
Trang 5Evaluate the following complex numbers and leave your results in polar form:
−
j j
o
2
60 3 8 6
(b)
) 5 ( ) 6
2
(
) 50 35 ( 60
10
(
j j
o o
+
− +
30
5
(
) 261 7 j 13 7 )(
30 5 ( ) 7392 0 j 1197 1 8 j 6 )(
3 2
Trang 6Find the phasors corresponding to the following signals:
Trang 7Let X = 8 ∠ 40o and and Y = 10 ∠ − 30o Evaluate the following quantities and express your results in polar form:
(a) (X + Y)X* (b) (X -Y)* (c) (X + Y)/X
Chapter 9, Solution 12
Let X = 8∠40° and Y = 10∠-30° Evaluate the following quantities and express
your results in polar form
45 39 31 118 ) 40 8 )(
55 0 789 14 (
) 40 8 )(
142 0 j 788 14 (
Trang 891 77 318 14 17
−
−
7 2134 06
246
9 6944 24186
) 5983 10 96 16 )(
84 67
(
) 80 60 )(
80 56 138 82 231 116
.
62
(
j j
j j
j j
j
−
−
= +
−
= +
+
−
− +
+
(c) ( )
221 4
256 24
139 46
.
338
) 38 12 923 16 )(
86 126 20
( ) 120 260
( 4
j
j j
−
Trang 9Evaluate these determinants:
(a)
j
j j
+
−
−
− +
1 5
3 2 6
16
10 4 30
20
(c)
j j
j j
1
0 1
Chapter 9, Solution 15
(a)
j 1 - 5 -
3 j 2 6 j 10
+
− +
16
10 - 4 - 30 20
0 j j 1
j 1 j 1
j 1 j
0 j j 1
Trang 10Transform the following sinusoids to phasors:
The phasor form is 5∠-100°
(c) 4 cos(2t) + 3 sin(2t) = 4 cos(2t) + 3 cos(2t – 90°)
The phasor form is 4∠0° + 3∠-90° = 4 – j3 = 5∠-36.87°
Trang 11Obtain the sinusoids corresponding to each of the following phasors:
v2 = 10 cos(40t + 53.13°)
(c) i1( t ) = 2.8 cos(377t – π/3)
(d) I2 = -0.5 – j1.2 = 1.3∠247.4°
) t (
i2 = 1.3 cos(103t + 247.4 °)
Trang 12Using phasors, find:
(a) 3cos(20t + 10º) – 5 cos(20t- 30º)
Therefore, 3 cos(20t + 10°) – 5 cos(20t – 30°) = 3.32 cos(20t + 114.49°)
(b) 40∠-90° + 30∠-45° = -j40 + 21.21 – j21.21
= 21.21 – j61.21
= 64.78∠-70.89°
Therefore, 40 sin(50t) + 30 cos(50t – 45°) = 64.78 cos(50t – 70.89°)
(c) Using sinα = cos(α − 90°),
20∠-90° + 10∠60° − 5∠-110° = -j20 + 5 + j8.66 + 1.7101 + j4.699
= 6.7101 – j6.641 = 9.44∠-44.7°
Therefore, 20 sin(400t) + 10 cos(400t + 60°) – 5 sin(400t – 20°)
= 9.44 cos(400t – 44.7°)
Chapter 9, Problem 20
A linear network has a current input 4cos(ω t + 20º)A and a voltage output 10
cos(ω t +110º) V Determine the associated impedance
Trang 13Simplify the following:
(a) f(t) = 5 cos(2t + 15(º) – 4sin(2t -30º)
324 8 )
t t
565 5 )
t t
v ( ) 4 2 ( )
10
o
V j
V V j
V
F = 10 + 4 − 2 , ω = 5 , = 20 ∠ − 30
ω ω
o
89 33 4 454 ) 10 j 32 17 )(
4 20 j 10 ( V 4 0 j V 20
Trang 14(a) v = 50 cos( ω t + 30o) + 30 cos(ω t + 90o)V
v t
0 10
j = ∠ ° ω = ω
+ V
V
10 ) j 1 ( − =
V
°
∠
= +
=
−
= 5 j 5 7 071 45 j
90 10 ( 20 j
4 5
ω + +
4 5 4 j
V
°
∠
= +
°
∠
= 3 43 - 110 96
3 j 5
80 - 20
V
Therefore, v(t) = 3.43 cos(4t – 110.96°)
Trang 15Using phasors, determine i(t) in the following equations:
(a) 2 3 ( ) 4 cos( 2 45o)
t t
i dt
di dt
i
Chapter 9, Solution 25
(a)
2 ,
45 - 4 3 2j ω I + I = ∠ ° ω =
°
∠
= + j 4 ) 4 - 45 3
°
∠
13 53 5
45 - 4 j4 3
45 - 4 I Therefore, i(t) = 0.8 cos(2t – 98.13°)
(b)
5 ,
22 5 6 j j
°
∠
56 26 708 6
22 5 3
j 6
22 5
Assuming that the value of the integral at t = - ∞ is zero, find i(t) using the phasor
method
Chapter 9, Solution 26
2 ,
0 1 j 2
ω + +
1 2 j
1 2 2
I
°
∠
= +
= 0 4 - 36 87
5 1 j 2
1
I
Therefore, i(t) = 0.4 cos(2t – 36.87°)
Trang 16A parallel RLC circuit has the node equation
10 - 110 j
100 50
ω +
380 (
110 R
) t ( v ) t (
Trang 17What is the instantaneous voltage across a 2- µ F capacitor when the current through it is
i =4 sin(106t +25o) A?
Chapter 9, Solution 29
5 0 j - ) 10 2 )(
10 ( j
1 C
j
1
6 -
×
= ω
Trang 18A series RLC circuit has R = 80 Ω , L = 240 mH, and C = 5 mF If the input voltage is v(t) = 10 cos 2t find the currrent flowing through the circuit
Trang 19A series RL circuit is connected to a 110-V ac source If the voltage across the resistor is
85 V, find the voltage across the inductor
Chapter 9, Solution 33
2 L
1
ω
= ω
5 (
1
3
Trang 20Find current i in the circuit of Fig 9.42, when vs(t) = 50 cos200t V
in
V I
Trang 21In the circuit of Fig 9.43, determine i Let vs = 60 cos(200t - 10o)V
100 200 mH
j x
x j L
⎯→
500 200
10 10
1 1
F
x x j C
⎯→
ω µ
1
t
Trang 22Determine the admittance Y for the circuit in Fig 9.44
Trang 23Find i(t) and v(t) in each of the circuits of Fig 9.45
3 ( j
1 C
j
1 F
6
1
=
= ω
j 4
2 j -
4 ( j
1 C
j
1 F
12
1
=
= ω
⎯→
⎯
12 j ) 3 )(
4 ( j L j H
0 50
Z
V I
Hence, i(t) = 10 cos(4t + 36.87°) A
= ( 50 0 ) 41 6 33 69 j12
8
12 j
V
Hence, v(t) = 41.6 cos(4t + 33.69°) V
Trang 24For the circuit shown in Fig 9.46, find Zeg and use that to find current I Let ω = 10 rad/s
Trang 25In the circuit of Fig 9.47, find io when:
(a) ω = 1 rad/s (b) ω = 5 rad/s
(c) ω = 10 rad/s
Figure 9.47
For Prob 9.40.
Trang 26(a) For ω = 1 ,
j ) 1 )(
1 ( j L j H
20 j - ) 05 0 )(
1 ( j
1 C
j
1 F
05
40 j - j ) 20 j -
||
2
− +
= +
0 4 j0.802
1.98
0 4
V I
Hence, io( t ) = 1.872 cos(t – 22.05°) A
(b) For ω = 5 ,
5 j ) 1 )(
5 ( j L j H
4 j - ) 05 0 )(
5 ( j
1 C
j
1 F
05
4 j - 5 j ) 4 j -
||
2 5
− +
= +
0 4 j4
1.6
0 4
V I
Hence, io( t ) = 0.89 cos(5t – 69.14°) A
(c) For ω = 10 ,
10 j ) 1 )(
10 ( j L j H
2 j - ) 05 0 )(
10 ( j
1 C
j
1 F
05
4 j - 10 j ) 2 j -
||
2 10
− +
= +
0 4 9
j 1
0 4
V I
Hence, io( t ) = 0.4417 cos(10t – 83.66°) A
Trang 27Find v(t) in the RLC circuit of Fig 9.48
1 ( j L j H
j - ) 1 )(
1 ( j
1 C j
1 F
1 j - 1 ) j -
||
) j 1 (
=
Z
j 2
j 2
) 10 )(
j 1 ( ) j 1 ( ) j 1 )(
j
V
Thus, v(t) = 6.325 cos(t – 18.43 °) V
Trang 28Calculate v o(t) in the circuit of Fig 9.49
100 j - ) 10 50 )(
200 ( j
1 C
j
1 F
×
= ω
⎯→
⎯ µ
20 j ) 1 0 )(
200 ( j L j H
1
20 j 40 j2 - 1
j100 - j100 50
) (50)(-j100 -j100
70
20 j ) 0 60 ( 20 j 40 30 20 j
20 j
o
V
Thus, vo( t ) = 17.14 sin(200t + 90 °) V
or vo( t ) = 17.14 cos(200t) V
Trang 29Find current Io in the circuit shown in Fig 9.50
2 j ) 10 10 )(
200 ( j L j mH
j - ) 10 5 )(
200 ( j
1 C
j
1 mF
×
= ω
⎯→
⎯
4 0 j 55 0 10
j 3 5 0 j 25 0 j 3
1 2 j
1 4
1
−
=
+ +
−
=
− + +
=
Y
865 0 j 1892 1 4 0 j 55 0
1 1
°
∠
= +
°
∠
= +
°
∠
865 0 j 1892 6
0 6 5
0 6
Z I
Thus, i(t) = 0.96 cos(200t – 7.956 °) A
Trang 30Find current Io in the network of Fig 9.52
1 =
j2 - 2
j4 - j4 2
||
-j2) ( 4 j
Z
j 1
j10 - ) 0 5 ( 3 j 1 2 j -
2 j -2
1
1
Z I
= +
10 - j 1
j10 - j - 1
j - j2
2
-j2 -
Trang 31j - ) 1 0 )(
10 ( j
1 C
j
1 F
1
10 ( j L j H
2
2 j 4
8 j 2 j
j1.6 0.8s 2 1
Z Z
Z I
) 40 5 )(
43 63 789 1 (
o
I
Thus, io( t ) = 2.325 cos(10t + 94.46 °) A
Trang 32In the circuit of Fig 9.54, determine the value of is(t)
= + +
−
+
− +
63 52 854 10
5 626
8 j 588 4 2
5 4
j 20 10 j
) 4 j 20 ( 10 j 2
Trang 33Given that vs(t) = 20 sin(100t - 40o
) in Fig 9.55, determine ix(t)
Figure 9.55
For Prob 9.48.
Chapter 9, Solution 48
Converting the circuit to the frequency domain, we get:
We can solve this using nodal analysis
A ) 4 9 t 100 sin(
j 30
29 24 643
.
15
I
29 24 643 15 03462 0 j 12307
.
0
40 2
V
40 2 ) 01538 0 j 02307 0 05
0 V 20 j
0 V 10
1
° +
− +
Trang 34Find vs(t) in the circuit of Fig 9.56 if the current ix through the 1- Ω resistor is 0.5 sin
) j 1 )(
2 j ( 2 ) j 1 (
||
2 j 2
+
− +
=
− +
=
Z
I I
I
j 1
2 j j 1 2 j
2 j
1 0 5 0
I
4 j
j 1 2
j
j 1
j 1
Trang 35Determine vx in the circuit of Fig 9.57 Let is(t) = 5 cos(100t + 40o)A
cos(
50
v
50 50
I
20
V
50 5 2 40 5 2 j 40 5 10 j 20
Trang 36If the voltage vo across the 2- Ω resistor in the circuit of Fig 9.58 is 10 cos2t V, obtain
2 ( j
1 C
j
1 F
1
2 ( j L j H
5
The current I through the 2- Ω resistor is
4 j 3 2 j 5 j 1
+ +
I
Therefore,
= ) t (
is 25 cos(2t – 53.13 °) A
Trang 37If Vo = 8 ∠ 30oV in the circuit of Fig 9.59, find I .
5 j 5 j 5
25 j 5 j
||
+
= +
s 2 1
1
4 5
2 j 5 12
10
I I
I Z Z
Z I
−
=
−
= +
=
) 5 2 j 5 2
5 2 ( j 5
4 30
−
+
= +
) j 5 )(
30 8
Trang 38Find Io in the circuit of Fig 9.60
4 x 6 j Z , 1 j 1 45 6569 5
90 8 4 j 4
4 x
−
=
5 1 j 5 1 4 j 4
) 5 1 j 5 9 ( ) 10 Z //(
2
A 67 21 873 8 33 8 7623 6
30 60 Z
30 60
Trang 39In the circuit of Fig 9.61, find Vs if Io= 2 ∠ 0o
A
Figure 9.61
For Prob 9.54.
Chapter 9, Solution 54
Since the left portion of the circuit is twice as large as the right portion, the
equivalent circuit is shown below
) j 1 ( 2 ) j 1 (
o
V
) j 1 ( 4
V
) j 1 ( 6
21
Vs
Trang 40* Find Z in the network of Fig 9.62, given that Vo = 4 ∠ 0oV
j
4 8 j
o
I
j 8 j4
-) 8 j ( (-j0.5) j4
-) 8 j (
1
I
5 0 j 8
j 8
) 8 j ( 2
j - 2
j 8 12 j20
3 j26
25 261 31 26 2
1 j 2
3
j26 - 4
+
Vo
−
Trang 41At ω = 377 rad/s, find the input impedance of the circuit shown in Fig 9.63
2 ⎯ ⎯→ j ω L = j
j C
2 1 j 6 2 j 2 2 j
) j 2 ( 2 j 1 ) j 2
− +
=
− +
=
S 1463 0 j 3171
Trang 42) 57 4 016 5 )(
90 5 ( ) 4 0 j 5 ( 5 j
Zin
= 2.707+j2.509 Ω
Trang 43Obtain Zin for the circuit in Fig 9.67
Figure 9.67
For Prob 9.60.
Chapter 9, Solution 60
Ω +
=
− +
+
= +
− + +
1 5 j
1 2 j 1
1 j 1
1 1
Z
4 0 j 8 0 ) 3 0 j 1 0 ( ) 2 0 j - ) 4 0 j 2 0 ( ) 5 0 j 5 0 ( 1
eq
−
=
− + +
− + +
1
eq
Trang 44For the circuit in Fig 9.69, find the input impedance Zin at 10 krad/s
10 10 ( j
1 C
j
1 F
×
×
= ω
⎯→
⎯ µ
50 ) 50 )(
0 1
=
V
) 50 )(
2 ( ) 100 j 20 j 50 )(
0 1 (
V
80 j 150 100 80 j 50
in in
Trang 45For the circuit in Fig 9.70, find the value of ZT⋅.
450 j 200 z
, 333 13 j 30 15
j
450 j 200
z
45 j 20 10
300 j 150 j 200
z
32
− +
j
8
Z
821 3 j 70 21 )
29 j 40
) 16 j 10 )(
333 13 j 30 ( )
Trang 4630
I
5 j 19 2
j 6
) 8 j 6 ( 10
||
) 6 j 4 ( 2
Z
2 j 7
) 4 j 3 )(
6 j 4 ( 2
+
− +
10 120
T
Z
V
Trang 47For the circuit in Fig 9.73, calculate ZT and Vab⋅
Figure 9.73
For Prob 9.66.
Trang 48) j 12 ( 145
170 5
j 60
) 10 j 40 )(
5 j 20 ( ) 10 j 40 (
||
) 5 j 20 (
90 60
I
j 12
2 j 8 5 j 60
10 j 40
+
= +
+
=
I I
I
j 12
j 4 5 j 60
5 j 20
−
= +
−
=
2 1
I I
V
j 12
40 j 10 j
12
) 40 j (160 -
+ + +
+
=
I I
V
145
j)(150) -12
( j 12
150 -
ab
+
= +
=
) 76 97 25 4 )(
24 175 457 12 (
Trang 49At ω = 103 rad/s find the input admittance of each of the circuits in Fig 9.74
10 ( j
1 C
j
1 F
5
×
= ω
⎯→
⎯ µ
) 80 j 60 (
||
20 j 60
Z
60 j 60
) 80 j 60 )(
20 j ( 60
− +
= 63 33 j 23 33 67 494 20 22in
Z
=
=
in in
10 ( j
1 C
j
1 F
×
= ω
⎯→
⎯ µ 20 60
||
) 10 j 40 (
||
20 50 j -
Z
10 j 60
) 10 j 40 )(
20 ( 50 j -
+ +
Z
=
=
in in
1
Z
Y 19.7 ∠74.56° mS = 5.24 + j18.99 mS
Trang 50Determine Yeq for the circuit in Fig 9.75
Figure 9.75
For Prob 9.68.
Chapter 9, Solution 68
4 j -
1 j 3
1 2 j 5
Trang 51Find the equivalent admittance Yeq of the circuit in Fig 9.76
Figure 9.76
For Prob 9.69.
Chapter 9, Solution 69
) 2 j 1 ( 4
1 2 j -
1 4
1 1
o
+
= +
=
Y
6 1 j 8 0 5
) 2 j 1 )(
4 ( 2 j 1
Y
) 6 0 j 8 0 ( ) 333 0 j ( ) 1 ( 6 0 j 8 0
1 3
j -
1 1
1 1
o
+ + +
=
− + +
=
′ 1 . 8 j 0 . 933 2 . 028 27 . 41 1
o
Y
2271 0 j 4378 0 41 27 - 4932 0
Y
773 4 j 4378 0 5 j
Y
97 22
773 4 j 4378 0 5 0 773 4 j 4378 0
1 2
1 1eq
− +
= +
+
=
Y
2078 0 j 5191 0 1eq
2078 0 j 5191 0
eq
Trang 52Find the equivalent impedance of the circuit in Fig 9.77
Figure 9.77
For Prob 9.70.
Trang 53Make a delta-to-wye transformation as shown in the figure below
9 j 7 5
j 15
) 10 j 15 )(
10 ( 15 j 10 10 j 5
) 15 j 10 )(
10 j -
+
−
= + +
) 15 j 10 )(
5 (
) 10 j - )(
5 (
||
) 2
||
) 5 3 j 5 6 ( 9 j 7
Z
5 4 j 5 13
) 8 j 7 )(
5 3 j 5 6 ( 9 j 7
− +
Trang 54Obtain the equivalent impedance of the circuit in Fig 9.78
Figure 9.78
For Prob 9.71.
Trang 55We apply a wye-to-delta transformation
j 1 2 j
2 j 2 2
j
4 j 2 j 2
Z
j 1 2
2 j 2
Z
j2 -2 j -
2 j 2
Z
8 0 j 6 1 3 j 1
) j 1 )(
4 j ( ) j 1 (
||
4 j
) j 1 )(
1 ( ) j 1 (
=
Z
6 0 j 2 2
1 2
j 2 -
1 2 j -
1 1
Trang 56Calculate the value of Zab in the network of Fig 9.79
Figure 9.79
For Prob 9.72.
Trang 57Transform the delta connections to wye connections as shown below
6 j - 18 j -
10 20 20
) 20 )(
20 (
50
) 10 )(
20 (
20 (
R3
4 4) j6 (j2
||
) 8 2 j ( j2
Z
j4) (4
||
) 2 j 8 ( j2 4
Z
j2 - 12
) 4 j j2)(4 (8
j2 4
ab
− +
+ +
=
Z
4054 1 j 567 3 j2 4
Trang 58Determine the equivalent impedance of the circuit in Fig 9.80
Figure 9.80
For Prob 9.73.
Chapter 9, Solution 73
Transform the delta connection to a wye connection as in Fig (a) and then
transform the wye connection to a delta connection as in Fig (b)
Trang 598 4 j - 10 j 6 j 8 j 8 j
− +
=
Z
-j4.81
Z
4 6 j j10
64 - 10 j
) 8 j )(
8 j (
Z
= +
+ +
+ +
2
6 9 j 4 46 ) 4 6 j )(
8 4 j 2 ( ) 4 6 j )(
8 4 j 4 ( ) 8 4 j 4 )(
8 4 j 2
25 7 j 5 1 4
6 j
6 9 j 4 46
Z
688 6 j 574 3 8 4 j 4
6 9 j 4 46
6 9 j 4 46
12 j 574 3
) 88 61 583 7 )(
90 6 (
j7.25) -j4)(1.5
20 j 727 1
) 07 79 11 9 )(
90 12 (
||
4 j -
||
)
||
6 j
) 5673 2 j 7494 0 (
||
) 3716 3 j 7407 0 (
Trang 60Design an RL circuit to provide a 90o
leading phase shift
Chapter 9, Solution 74
One such RL circuit is shown below
We now want to show that this circuit will produce a 90° phase shift
) 3 j 1 ( 4 2 j 1
20 j 20 - 40
j 20
) 20 j 20 )(
20 j ( ) 20 j 20 (
+
= +
=
Z
) j 1 ( 3
1 3 j 6
3 j 1 ) 0 1 ( 12 j 24
12 j 4
+
= +
Z
Z V
= +
3
j ) j 1 ( 3
1 j 1
j 20
j 20
20 j
Trang 61Design a circuit that will transform a sinusoidal voltage input to a cosinusoidal voltage output
Chapter 9, Solution 75
Since ) cos( ω t ) = sin( ω t + 90 ° , we need a phase shift circuit that will cause the output to lead the input by 90° This is achieved by the RL circuit shown
below, as explained in the previous problem
This can also be obtained by an RC circuit
Chapter 9, Problem 76
For the following pairs of signals, determine if v1 leads or lags v2 and by how much
(a) v1 = 10 cos(5t - 20o
), v2 = 8 sin5t (b) v1 = 19 cos(2t - 90o
), v2 = 6 sin2t (c) v1 = - 4 cos10t , v2 = 15 sin10t