Apply nodal analysis to solve for Vx in the circuit in Fig... Using nodal analysis, determine Vo in the circuit in Fig... Apply nodal analysis to find io and the power dissipated in each
Trang 1Determine Ix in the circuit shown in Fig 3.50 using nodal analysis
+ _
Trang 2For the circuit in Fig 3.51, obtain v1 and v2
v 10
+ +
= 36 = - 2v1 + 3v2 (2)
Solving (1) and (2),
v1 = 0 V, v2 = 12 V
Trang 3Find the currents i1 through i4 and the voltage vo in the circuit in Fig 3.52
v 20
v 10
+ + +
i1 = = 10
Trang 4Given the circuit in Fig 3.53, calculate the currents i1 through i4
Trang 5Obtain v0 in the circuit of Fig 3.54
v 20 k
v
=
− +
v 4
12
=
− + +
−
or v0 = 8.727 V
Trang 6Apply nodal analysis to solve for Vx in the circuit in Fig 3.56
0 V 10
0 V
Trang 7Using nodal analysis, find v0 in the circuit in Fig 3.57
3 v 5
=
− +
− +
Trang 8Determine Ib in the circuit in Fig 3.58 using nodal analysis
0 I 300 V 5 V 15 72 V 3
get we g simplifyin
0 150
0 I 60 V 50
0 V 250
24 V
b1
11
b1
11
=
− + +
−
=
−
− +
− +
−
But
250
V 24
Ib = − 1
Substituting this into the nodal equation leads to
or V 0 8 100 V 2
24 1− = 1 = 4.165 V
Thus, Ib = (24 – 4.165)/250 = 79.34 mA
Trang 9Find i0 in the circuit in Fig 3.59
Figure 3.59
Chapter 3, Solution 10
–+
12V
2v 0
+ v 0 –
+ –
v 3
v 3
Trang 10Find Vo and the power dissipated in all the resistors in the circuit of Fig 3.60
4 Ω
+ _
) 12 ( V 2
0 V 1
− +
Trang 11Using nodal analysis, determine Vo in the circuit in Fig 3.61
Figure 3.61 For Prob 3.12
Vo
Trang 12There are two unknown nodes, as shown in the circuit below
0 1
V V 2
0 V 10
30 V
o1
o11
− +
−
(1)
At node o,
0 I 20 V 6 V 5
0 5
0 V I 4 1
V V
xo
1
ox1o
=
− +
−
=
− +
−
−
(2) But Ix = V1/2 Substituting this in (2) leads to
–15V1 + 6Vo = 0 or V1 = 0.4Vo (3)
Substituting (3) into 1,
16(0.4Vo) – 10Vo = 30 or Vo = –8.333 V
Trang 13Calculate v1 and v2 in the circuit of Fig 3.62 using nodal analysis
Figure 3.62
Chapter 3, Solution 13
At node number 2, [(v2 + 2) – 0]/10 + v2/4 = 3 or v2 = 8 volts
But, I = [(v2 + 2) – 0]/10 = (8 + 2)/10 = 1 amp and v1 = 8x1 = 8volts
Trang 14Using nodal analysis, find vo in the circuit of Fig 3.63
v
= +
v 5 2
v
+
= +
−
4v1 - 7v0 = -20 (2) Solving (1) and (2), v0 = 27.27 V
Trang 15Apply nodal analysis to find io and the power dissipated in each resistor in the circuit of Fig 3.64
Figure 3.64
Trang 162 2
P35 = ( v − v )2G = ( 2 )23 =
3
Trang 17Determine voltages v1 through v3 in the circuit of Fig 3.65 using nodal analysis
Trang 18Using nodal analysis, find current io in the circuit of Fig 3.66
Figure 3.66
Trang 19v 4
v v 10
v 60 4
v 60
=
− +
− +
Trang 20Determine the node voltages in the circuit in Fig 3.67 using nodal analysis
v 2
v v 2
−
40 = 2v1 + v3 (2) From Fig (b), - v1 - 10 + v3 = 0 v3 = v1+ 10 (3) Solving (1) to (3), we obtain v1 = 10 V, v2 = 20 V = v3
Trang 21Figure 3.68
Chapter 3, Solution 19
At node 1,
3 2 1 1
2 1 3
4 8
2 2
2
4 2
V V V
V
V
− +
2 3 1 3
7 2 4 36 0
4 2
Using MATLAB,
V 267 12
V, 933 4 V, 10 267
12
933 4
10
3 2
V B
A
Trang 22For the circuit in Fig 3.69, find v1, v2, and v3 using nodal analysis
Figure 3.69
Chapter 3, Solution 20
Nodes 1 and 2 form a supernode; so do nodes 1 and 3 Hence
0 4
0 4
5 4 V,
−
V
Trang 23For the circuit in Fig 3.70, find v1 and v2 using nodal analysis
Figure 3.70
Trang 24v v 10
v v 4
v
=
− +
−
3v1 - 5v2 - 2v3 = 0 (2) Note that v0 = v2 We now apply KVL in Fig (b)
- v3 - 3v2 + v2 = 0 v3 = - 2v2 (3)
From (1) to (3),
v1 = 1 V, v2 = 3 V
Trang 25Determine v1 and v2 in the circuit in Fig 3.71
v 2
v
+ +
Trang 26Use nodal analysis to find Vo in the circuit of Fig 3.72
) V V 2 ( V 2
0 V 1
30
V
1o
1oo
0 V 4
V ) V
V
2
(
o11
o1
_
Vo
Trang 27Use nodal analysis and MATLAB to find Vo in the circuit in Fig 3.73
Trang 284 V 125 0 V 125 1 0 8
4
4 V 25 0 V 75 0 0 4
V V 2
0 V
2 V 75 0 V 25 0 0 2 2
0 V 4
V V
32
32
2 V 125 1 V 125 0 0 1
0 V 8
V V
4 V 125 1 0 0
125 0
0 75
0 25 0 0
0 25 0 75 0 0
125 0 0
0 125
1
Now we can use MATLAB to solve for the unknown node voltages
>> Y=[1.125,0,0,-0.125;0,0.75,-0.25,0;0,-0.25,0.75,0;-0.125,0,0,1.125]
Y = 1.1250 0 0 -0.1250
0 0.7500 -0.2500 0
0 -0.2500 0.7500 0 -0.1250 0 0 1.1250
>> I=[4,-4,-2,2]'
I =
4 -4 -2
2
>> V=inv(Y)*I
V = 3.8000 -7.0000 -5.0000 2.2000
Vo = V1 – V4 = 3.8 – 2.2 = 1.6 V
Trang 29Use nodal analysis along with MATLAB to determine the node voltages in Fig 3.74
Figure 3.74 For Prob 3.25
f
b
c b
Trang 30B = A V V = A-1 B
Using MATLAB leads to
V1 = 25.52 V, V2 = 22.05 V, V3 = 14.842 V, V4 = 15.055 V
Trang 31Calculate the node voltages v1, v2, and v3 in the circuit of Fig 3.75
Figure 3.75
Trang 32At node 1,
3 2 1 2
1 3 1
5 10
3
20
15
V V V V
V V V
− +
4
5
3 2 2 2
=
− +
13
233
5
V V 15
V 10 10
0 45 V
V V 11
6
3
3 15
7
2 4
7
32
78 2
19 7 B
A
Thus,
V1 = –7.19V; V2 = –2.78V; V3 = 2.89V
Trang 33Use nodal analysis to determine voltages v1, v2, and v3 in the circuit in Fig 3.76
Figure 3.76
Trang 34v v 7 13 4
1 6 1
4 11 7
3 2 1
, 176 7
13 4
1 6 1
4 11 7
1 6 0
4 11 2
, 66 7 4 4
1 0 1
4 2 7
0 6 1
2 11 7
−
−
= Δ
v1 = 0 625 V ,
176
110
1 = = Δ
Δ
v1 = 625 mV, v2 = 375 mV, v3 = 1.625 V
Trang 35Use MATLAB to find the voltages at nodes a, b, c, and d in the circuit of Fig 3.77
Figure 3.77
Trang 36At node c,
d c b c
b c
c
d
V V V V
V V
V
V
2 11 5 0 5
4
At node b,
c b a b
b c b
a
V V V V
V V V
V
2 4 45
8 4
a a d
a
V V V V
V V V
V
4 2 7 30 0
8
45 16
d d d
a
V V V V
V V V
V
7 2 5 150 10
20 4
30
− +
=
⎯→
⎯
− +
V V V V
d c b a
7 2
0
5
4 0
2
7
0 2
4
1
2 11
736 1
847 7
14 101
V, 736 1
V, 847 7 V, 14
Trang 37Use MATLAB to solve for the node voltages in the circuit of Fig 3.78
Figure 3.78
Chapter 3, Solution 29
At node 1,
4 2 1 2
1 1 4
At node 2,
3 2 1 3
2 2
3 3
4 1 4
In matrix form, (1) to (4) become
B AV
V V V
5 1 0 1
1 5 4 0
0 4 7 1
1 0 1 4
4 3 2 1
309 2
209 1
7708 01
B
A
V
i.e
Trang 39v v 10
v 100 40
v 120 v
v 7 6
9 7
o 1
5 54 49 7
6
9 7
= +
8440 7
720
9 280
280 7
−
= Δ
5
8440
1 = − = − Δ
Δ
Io = –5.6 A
Trang 40+ v 0 –
Trang 411 + 2v0 =
1
v v 1
v 4
31
Solving (2) to (4) leads to,
v1 = 4.97V, v2 = 4.85V, v3 = –0.12V
Trang 4210 V
We have a supernode as shown in figure (a) It is evident that v2 = 12 V, Applying KVL
to loops 1and 2 in figure (b), we obtain,
-v1 – 10 + 12 = 0 or v1 = 2 and -12 + 20 + v3 = 0 or v3 = -8 V
Thus, v1 = 2 V, v2 = 12 V, v3 = -8V
Trang 43Which of the circuits in Fig 3.82 is planar? For the planar circuit, redraw the circuits with no crossing branches
Figure 3.82
Trang 44(a) This is a planar circuit It can be redrawn as shown below
Trang 45Determine which of the circuits in Fig 3.83 is planar and redraw it with no crossing branches
Figure 3.83
Trang 46(a) This is a planar circuit because it can be redrawn as shown below,
Trang 47Rework Prob 3.5 using mesh analysis
Trang 48Rework Prob 3.6 using mesh analysis
Chapter 3, Problem 6
Use nodal analysis to obtain v0 in the circuit in Fig 3.55
Figure 3.55
Trang 49I 4 3
3 5 5
6
, 11 4 3
3 5
3 6
6 5
−
−
= Δ
, 11
Δ
=
i1 = -I1 = -9/11 = -0.8181 A, i2 = I1 – I2 = 10/11 = 1.4545 A
vo = 6i2 = 6x1.4545 = 8.727 V
Trang 50Rework Prob 3.8 using mesh analysis
Using (1), (2), and (3) we get i1 = -5/9
Therefore, we get v0 = -2i 1 = -2(-5/9) = 1.1111 volts
Trang 5124 V
+ _ 9 V
1 Ω
4 Ω
2 A
Trang 521(I2–I1) + 2(I2–I4) + 9 + 4I2 = 0
I I 1 1 0
6 6 2
1 0 7
432
We can now use MATLAB to solve the problem
>> Z=[7,0,-1;-2,6,6;0,-1,0]
Z =
7 0 -1 -2 6 6
0 -1 0
>> V=[-11,20,4]'
V = -11
20
4
>> I=inv(Z)*V
I = -0.5500 -4.0000 7.1500
Io = I1 – I2 = –2 – 4 = –6 A
Check using the super mesh (equation (3)): 1.1 – 24 + 42.9 = 20!
Trang 53Determine the mesh currents i1 and i2 in the circuit shown in Fig 3.85
Figure 3.85
Chapter 3, Solution 39
For mesh 1,
0 6 10 2
10 − + 1 − 2 =
But Ix = I1 − I2 Hence,
212
12
A, 8
I
Trang 54For the bridge network in Fig 3.86, find Io using mesh analysis
0 = -4i1 – 2i2 + 10i3 0 = -2i1 – i2 + 5i3 (3)
Solving (1), (2), and (3), we obtain,
io = i1 = 4.286 mA
Trang 55Apply mesh analysis to find io in Fig 3.87
Figure 3.87
Trang 56i i 6 1 0
1 7 2
0 1 6
3 2 1
, 234 6
1 0
1 7 2
0 1 6
1 8 2
0 3 6
Δ
38 2
1 0
8 7 2
3 1 6
At node 0, i + i2 = i3 or i = i3 – i2 =
234
240 38
2 3
−
−
−
= Δ
Δ
− Δ
= 1.188 A
Trang 57Determine the mesh currents in the circuit of Fig 3.88
Figure 3.88
Chapter 3, Solution 42
For mesh 1,
(1) 2
1 2
2 1
3 1
2 2
40
0
40 100
30
0 30
50
3 2 1
40 0
48 01
B A
I
i.e I1 = 0.48 A, I2 = 0.4 A, I3 = 0.44 A
Trang 58Use mesh analysis to find vab and io in the circuit in Fig 3.89
Trang 59Use mesh analysis to obtain io in the circuit of Fig 3.90
Solving (1) to (3), i1 = -3.067, i3 = -1.3333; io = i1 – i3 = -1.7333 A
Trang 60Find current i in the circuit in Fig 3.91
For the supermesh, 6i3 + 14i4 – 2i1 – 6i2= 0 (3) But i4 – i3 = 4 which leads to i4 = i3 + 4 (4)
Solving (1) to (4) by elimination gives i = i1 = 8.561 A
Trang 61Calculate the mesh currents i1 and i2 in Fig 3.92
Figure 3.92
Chapter 3, Solution 46
For loop 1,
12 8 11 0
8
77 i2 − i2 = ⎯ ⎯→ i2= A and i1 = i 72 = 1 217 A
Trang 62Rework Prob 3.19 using mesh analysis
Chapter 3, Problem 3.19
Use nodal analysis to find V1, V2, and V3 in the circuit in Fig 3.68
Figure 3.68
Trang 63First, transform the current sources as shown below
2
4
2 7
1
4 1
7
3 2 1
Using MATLAB,
8667 1 , 0333 0 , 5 2 8667
1
0333 0
2
3 2
I B
A
I
But
V 10 4 20 4
20
1 1
1 = − V ⎯ ⎯→ V = − I =
I
V 933 4 ) (
8 12 8
12
2 3
3
2 = V − ⎯ ⎯→ V = + I =
Trang 64Determine the current through the 10-kΩ resistor in the circuit in Fig 3.93 using mesh analysis
Figure 3.93
Trang 65We apply mesh analysis and let the mesh currents be in mA
3 1
4 1 − 2 − 3 + 4 =
Putting (1) to (4) in matrix form gives
B AI
I I I
14 5 2
4
5 15 10
0
2 10 13
1
4 0 1
5
4 3 2 1
087 8
217 7
Trang 66Find vo and io in the circuit of Fig 3.94
Figure 3.94
Trang 67At node 0, i2 – i1 = 2i0 and i0 = -i1 which leads to i2 = -i1 (2)
For loop 3, -i1 –2i2 + 6i3 = 0 which leads to 6i3 = -i1 (3) Solving (1) to (3), i1 = (-32/3)A, i2 = (32/3)A, i3 = (16/9)A
i0 = -i1 = 10.667 A, from fig (b), v0 = i3-3i1 = (16/9) + 32 = 33.78 V
Trang 68Use mesh analysis to find the current io in the circuit in Fig 3.95
For loop 1, 16i1 – 10i2 – 2i3 = 0 which leads to 8i1 – 5i2 – i3 = 0 (1)
For the supermesh, -60 + 10i2 – 10i1 + 10i3 – 2i1 = 0
Also, 3i0 = i3 – i2 and i0 = i1 which leads to 3i1 = i3 – i2 (3) Solving (1), (2), and (3), we obtain i1 = 1.731 and i0 = i1 = 1.731 A
Trang 69Apply mesh analysis to find vo in the circuit in Fig 3.96
Trang 70Use mesh analysis to find i1, i2, and i3 in the circuit of Fig 3.97
Figure 3.97
Trang 71+
V S
+ – 2V 0
i1 = 3.5 A, i2 = -0.5 A, i3 = 2.5 A
Trang 72Find the mesh currents in the circuit of Fig 3.98 using MATLAB
2 kΩ
+ _
Applying mesh analysis leads to;
–12 + 4kI1 – 3kI2 – 1kI3 = 0 (1)
–3kI1 + 7kI2 – 4kI4 = 0
Trang 73I I I
I k 16 6 0 0
6 15 0 1
0 0 7 3
0 1 3 4
5321
3 mA –2.423 mA
Trang 74Find the mesh currents i1, i2, and i3 in the circuit in Fig 3.99
Figure 3.99
Chapter 3, Solution 54
Let the mesh currents be in mA For mesh 1,
2 1 2
2 1 3
Using MATLAB,
mA 25 10 ,
mA 5 8 , mA 25 5 25
10
5 8
25 5
3 2
I B
A
I
Trang 75In the circuit of Fig 3.100, solve for i1, i2, and i3
Figure 3.100
Trang 76For mesh 4, 12(I4 – I1) + 4(I4 – I3) – 8 = 0 (2)
For the supermesh 6(I2 – I1) + 10 + 2I3 + 4(I3 – I4) = 0
Trang 77Determine v1 and v2 in the circuit of Fig 3.101
Figure 3.101
Trang 78For loop 1, 12 = 4i1 – 2i2 – 2i3 which leads to 6 = 2i1 – i2 – i3 (1)
For loop 2, 0 = 6i2 –2i1 – 2 i3 which leads to 0 = -i1 + 3i2 – i3 (2)
For loop 3, 0 = 6i3 – 2i1 – 2i2 which leads to 0 = -i1 – i2 + 3i3 (3)
In matrix form (1), (2), and (3) become,
1 3 1
1 1 2
3 2 1
3 1 1
1 3 1
1 1 2
1 3 1
1 6 2
0 3 1
6 1 2
Trang 79In the circuit in Fig 3.102, find the values of R, V1, and V2 given that io = 18 mA
Figure 3.102
Chapter 3, Solution 57
Assume R is in kilo-ohms
V V
V V
mA x k
V2 = 4 Ω 18 = 72 , 1 = 100 − 2 = 100 − 72 = 28
Current through R is
R R R
i V i
R
3
3 28 3
Trang 80Find i1, i2, and i3 the circuit in Fig 3.103
For loop 1, 120 + 40i1 – 10i2 = 0, which leads to -12 = 4i1 – i2 (1)
For loop 2, 50i2 – 10i1 – 10i3 = 0, which leads to -i1 + 5i2 – i3 = 0 (2)
For loop 3, -120 – 10i2 + 40i3 = 0, which leads to 12 = -i2 + 4i3 (3)
Solving (1), (2), and (3), we get, i1 = -3A, i2 = 0, and i3 = 3A
Trang 81Rework Prob 3.30 using mesh analysis
Chapter 3, Problem 30
Using nodal analysis, find vo and io in the circuit of Fig 3.79
Figure 3.79
Trang 8212 3
1
32 2 3
i i
3 2 1
1 3
0
12 3
1
32 2
12 6
1
32 10 3
6 3 1
10 2 3
Trang 83Calculate the power dissipated in each resistor in the circuit in Fig 3.104
At node 1, (v1/1) + (0.5v1/1) = (10 – v1)/4, which leads to v1 = 10/7
At node 2, (0.5v1/1) + ((10 – v2)/8) = v2/2 which leads to v2 = 22/7
P1Ω = (v1)2/1 = 2.041 watts, P2Ω = (v2)2/2 = 4.939 watts
P4Ω = (10 – v1)2/4 = 18.38 watts, P8Ω = (10 – v2)2/8 = 5.88 watts
Trang 84Calculate the current gain io/is in the circuit of Fig 3.105
At node 1, is = (v1/30) + ((v1 – v2)/20) which leads to 60is = 5v1 – 3v2 (1)
But v2 = -5v0 and v0 = v1 which leads to v2 = -5v1
Hence, 60is = 5v1 + 15v1 = 20v1 which leads to v1 = 3is, v2 = -15is
i0 = v2/50 = -15is/50 which leads to i0/is = -15/50 = –0.3
Trang 85Find the mesh currents i1, i2, and i3 in the network of Fig 3.106
We have a supermesh Let all R be in kΩ, i in mA, and v in volts
For the supermesh, -100 +4i1 + 8i2 + 2i3 + 40 = 0 or 30 = 2i1 + 4i2 + i3 (1)
Solving (1), (2), and (3), we get i1 = 2 mA, i2 = 6 mA, and i3 = 2 mA
Trang 86Find vx, and ix in the circuit shown in Fig 3.107
At node A, i1 + 3 + (vx/4) = i2, but vx = 2(i1 – i2), hence, i1 + 2 = i2 (2)
Solving (1) and (2) gives i1 = 2.105 A and i2 = 4.105 A
vx = 2(i1 – i2) = –4 volts and ix = i2 – 2 = 2.105 amp
Trang 87Find vo, and io in the circuit of Fig 3.108
Figure 3.108
Trang 88For mesh 2, 20i2 – 10i1 + 4i0 = 0 (1)
But at node A, io = i1 – i2 so that (1) becomes i1 = (16/6)i2 (2) For the supermesh, -100 + 50i1 + 10(i1 – i2) – 4i0 + 40i3 = 0
Trang 89Use MATLAB to solve for the mesh currents in the circuit of Fig 3.109
1 6 12
–I1 – I2 + 7I4 – 2I5 – 6 = 0 or
6 = –I1 – I2 + 7I4 – 2I5 (4) For mesh 5,
–I2 – I3 – 2I4 + 8I5 – 10 = 0 or
5 4 3
10 = − I − I − I + I (5)
Trang 90B AI 10
6 9 0 12
I I I I I
8 2 1 1
0
2 7 0
1
1
1 0 15
8
0
1 1 8 16
6
0 1 0
6
12
54321
Trang 91Write a set of mesh equations for the circuit in Fig 3.110 Use MATLAB to determine the mesh currents
+ _
+ _
8 Ω
10 Ω
+ _
I5
32 V
8 Ω
Trang 9218 4 0
6
0
4 12 4 2
2
0 4 18
0
6
6 2 0
30
4
0 2 6 4
Trang 93Obtain the node-voltage equations for the circuit in Fig 3.111 by inspection Then solve
V 3 2 V 5 0 5 0 0
5 0 95 0 25 0
0 25 0 35
Trang 94equation
Vo = V2 – V3 Substituting this back into the matrix equation, the first equation becomes,
2 V 5 0 5 0 0
5 0 95 0 25 0
3 25 3 35 0
Now we can use MATLAB to solve for V
>> Y=[0.35,-3.25,3;-0.25,0.95,-0.5;0,-0.5,0.5]
Y = 0.3500 -3.2500 3.0000 -0.2500 0.9500 -0.5000
0 -0.5000 0.5000
>> I=[-2,0,6]'
I = -2
0
6
>> V=inv(Y)*I
V = -164.2105 -77.8947 -65.8947
Vo = V2 – V3 = –77.89 + 65.89 = –12 V
Let us now do a quick check at node 1
–3(–12) + 0.1(–164.21) + 0.25(–164.21+77.89) + 2 =
+36 – 16.421 – 21.58 + 2 = –0.001; answer checks!