1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual fundamentals of electric circuits 3rd edition chapter03

125 362 7

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 125
Dung lượng 1,27 MB

Nội dung

Apply nodal analysis to solve for Vx in the circuit in Fig... Using nodal analysis, determine Vo in the circuit in Fig... Apply nodal analysis to find io and the power dissipated in each

Trang 1

Determine Ix in the circuit shown in Fig 3.50 using nodal analysis

+ _

Trang 2

For the circuit in Fig 3.51, obtain v1 and v2

v 10

+ +

= 36 = - 2v1 + 3v2 (2)

Solving (1) and (2),

v1 = 0 V, v2 = 12 V

Trang 3

Find the currents i1 through i4 and the voltage vo in the circuit in Fig 3.52

v 20

v 10

+ + +

i1 = = 10

Trang 4

Given the circuit in Fig 3.53, calculate the currents i1 through i4

Trang 5

Obtain v0 in the circuit of Fig 3.54

v 20 k

v

=

− +

v 4

12

=

− + +

or v0 = 8.727 V

Trang 6

Apply nodal analysis to solve for Vx in the circuit in Fig 3.56

0 V 10

0 V

Trang 7

Using nodal analysis, find v0 in the circuit in Fig 3.57

3 v 5

=

− +

− +

Trang 8

Determine Ib in the circuit in Fig 3.58 using nodal analysis

0 I 300 V 5 V 15 72 V 3

get we g simplifyin

0 150

0 I 60 V 50

0 V 250

24 V

b1

11

b1

11

=

− + +

=

− +

− +

But

250

V 24

Ib = − 1

Substituting this into the nodal equation leads to

or V 0 8 100 V 2

24 1− = 1 = 4.165 V

Thus, Ib = (24 – 4.165)/250 = 79.34 mA

Trang 9

Find i0 in the circuit in Fig 3.59

Figure 3.59

Chapter 3, Solution 10

–+

12V

2v 0

+ v 0

+ –

v 3

v 3

Trang 10

Find Vo and the power dissipated in all the resistors in the circuit of Fig 3.60

4 Ω

+ _

) 12 ( V 2

0 V 1

− +

Trang 11

Using nodal analysis, determine Vo in the circuit in Fig 3.61

Figure 3.61 For Prob 3.12

Vo

Trang 12

There are two unknown nodes, as shown in the circuit below

0 1

V V 2

0 V 10

30 V

o1

o11

− +

(1)

At node o,

0 I 20 V 6 V 5

0 5

0 V I 4 1

V V

xo

1

ox1o

=

− +

=

− +

(2) But Ix = V1/2 Substituting this in (2) leads to

–15V1 + 6Vo = 0 or V1 = 0.4Vo (3)

Substituting (3) into 1,

16(0.4Vo) – 10Vo = 30 or Vo = –8.333 V

Trang 13

Calculate v1 and v2 in the circuit of Fig 3.62 using nodal analysis

Figure 3.62

Chapter 3, Solution 13

At node number 2, [(v2 + 2) – 0]/10 + v2/4 = 3 or v2 = 8 volts

But, I = [(v2 + 2) – 0]/10 = (8 + 2)/10 = 1 amp and v1 = 8x1 = 8volts

Trang 14

Using nodal analysis, find vo in the circuit of Fig 3.63

v

= +

v 5 2

v

+

= +

4v1 - 7v0 = -20 (2) Solving (1) and (2), v0 = 27.27 V

Trang 15

Apply nodal analysis to find io and the power dissipated in each resistor in the circuit of Fig 3.64

Figure 3.64

Trang 16

2 2

P35 = ( v − v )2G = ( 2 )23 =

3

Trang 17

Determine voltages v1 through v3 in the circuit of Fig 3.65 using nodal analysis

Trang 18

Using nodal analysis, find current io in the circuit of Fig 3.66

Figure 3.66

Trang 19

v 4

v v 10

v 60 4

v 60

=

− +

− +

Trang 20

Determine the node voltages in the circuit in Fig 3.67 using nodal analysis

v 2

v v 2

40 = 2v1 + v3 (2) From Fig (b), - v1 - 10 + v3 = 0 v3 = v1+ 10 (3) Solving (1) to (3), we obtain v1 = 10 V, v2 = 20 V = v3

Trang 21

Figure 3.68

Chapter 3, Solution 19

At node 1,

3 2 1 1

2 1 3

4 8

2 2

2

4 2

V V V

V

V

− +

2 3 1 3

7 2 4 36 0

4 2

Using MATLAB,

V 267 12

V, 933 4 V, 10 267

12

933 4

10

3 2

V B

A

Trang 22

For the circuit in Fig 3.69, find v1, v2, and v3 using nodal analysis

Figure 3.69

Chapter 3, Solution 20

Nodes 1 and 2 form a supernode; so do nodes 1 and 3 Hence

0 4

0 4

5 4 V,

V

Trang 23

For the circuit in Fig 3.70, find v1 and v2 using nodal analysis

Figure 3.70

Trang 24

v v 10

v v 4

v

=

− +

3v1 - 5v2 - 2v3 = 0 (2) Note that v0 = v2 We now apply KVL in Fig (b)

- v3 - 3v2 + v2 = 0 v3 = - 2v2 (3)

From (1) to (3),

v1 = 1 V, v2 = 3 V

Trang 25

Determine v1 and v2 in the circuit in Fig 3.71

v 2

v

+ +

Trang 26

Use nodal analysis to find Vo in the circuit of Fig 3.72

) V V 2 ( V 2

0 V 1

30

V

1o

1oo

0 V 4

V ) V

V

2

(

o11

o1

_

Vo

Trang 27

Use nodal analysis and MATLAB to find Vo in the circuit in Fig 3.73

Trang 28

4 V 125 0 V 125 1 0 8

4

4 V 25 0 V 75 0 0 4

V V 2

0 V

2 V 75 0 V 25 0 0 2 2

0 V 4

V V

32

32

2 V 125 1 V 125 0 0 1

0 V 8

V V

4 V 125 1 0 0

125 0

0 75

0 25 0 0

0 25 0 75 0 0

125 0 0

0 125

1

Now we can use MATLAB to solve for the unknown node voltages

>> Y=[1.125,0,0,-0.125;0,0.75,-0.25,0;0,-0.25,0.75,0;-0.125,0,0,1.125]

Y = 1.1250 0 0 -0.1250

0 0.7500 -0.2500 0

0 -0.2500 0.7500 0 -0.1250 0 0 1.1250

>> I=[4,-4,-2,2]'

I =

4 -4 -2

2

>> V=inv(Y)*I

V = 3.8000 -7.0000 -5.0000 2.2000

Vo = V1 – V4 = 3.8 – 2.2 = 1.6 V

Trang 29

Use nodal analysis along with MATLAB to determine the node voltages in Fig 3.74

Figure 3.74 For Prob 3.25

f

b

c b

Trang 30

B = A V V = A-1 B

Using MATLAB leads to

V1 = 25.52 V, V2 = 22.05 V, V3 = 14.842 V, V4 = 15.055 V

Trang 31

Calculate the node voltages v1, v2, and v3 in the circuit of Fig 3.75

Figure 3.75

Trang 32

At node 1,

3 2 1 2

1 3 1

5 10

3

20

15

V V V V

V V V

− +

4

5

3 2 2 2

=

− +

13

233

5

V V 15

V 10 10

0 45 V

V V 11

6

3

3 15

7

2 4

7

32

78 2

19 7 B

A

Thus,

V1 = –7.19V; V2 = –2.78V; V3 = 2.89V

Trang 33

Use nodal analysis to determine voltages v1, v2, and v3 in the circuit in Fig 3.76

Figure 3.76

Trang 34

v v 7 13 4

1 6 1

4 11 7

3 2 1

, 176 7

13 4

1 6 1

4 11 7

1 6 0

4 11 2

, 66 7 4 4

1 0 1

4 2 7

0 6 1

2 11 7

= Δ

v1 = 0 625 V ,

176

110

1 = = Δ

Δ

v1 = 625 mV, v2 = 375 mV, v3 = 1.625 V

Trang 35

Use MATLAB to find the voltages at nodes a, b, c, and d in the circuit of Fig 3.77

Figure 3.77

Trang 36

At node c,

d c b c

b c

c

d

V V V V

V V

V

V

2 11 5 0 5

4

At node b,

c b a b

b c b

a

V V V V

V V V

V

2 4 45

8 4

a a d

a

V V V V

V V V

V

4 2 7 30 0

8

45 16

d d d

a

V V V V

V V V

V

7 2 5 150 10

20 4

30

− +

=

⎯→

− +

V V V V

d c b a

7 2

0

5

4 0

2

7

0 2

4

1

2 11

736 1

847 7

14 101

V, 736 1

V, 847 7 V, 14

Trang 37

Use MATLAB to solve for the node voltages in the circuit of Fig 3.78

Figure 3.78

Chapter 3, Solution 29

At node 1,

4 2 1 2

1 1 4

At node 2,

3 2 1 3

2 2

3 3

4 1 4

In matrix form, (1) to (4) become

B AV

V V V

5 1 0 1

1 5 4 0

0 4 7 1

1 0 1 4

4 3 2 1

309 2

209 1

7708 01

B

A

V

i.e

Trang 39

v v 10

v 100 40

v 120 v

v 7 6

9 7

o 1

5 54 49 7

6

9 7

= +

8440 7

720

9 280

280 7

= Δ

5

8440

1 = − = − Δ

Δ

Io = –5.6 A

Trang 40

+ v 0

Trang 41

1 + 2v0 =

1

v v 1

v 4

31

Solving (2) to (4) leads to,

v1 = 4.97V, v2 = 4.85V, v3 = –0.12V

Trang 42

10 V

We have a supernode as shown in figure (a) It is evident that v2 = 12 V, Applying KVL

to loops 1and 2 in figure (b), we obtain,

-v1 – 10 + 12 = 0 or v1 = 2 and -12 + 20 + v3 = 0 or v3 = -8 V

Thus, v1 = 2 V, v2 = 12 V, v3 = -8V

Trang 43

Which of the circuits in Fig 3.82 is planar? For the planar circuit, redraw the circuits with no crossing branches

Figure 3.82

Trang 44

(a) This is a planar circuit It can be redrawn as shown below

Trang 45

Determine which of the circuits in Fig 3.83 is planar and redraw it with no crossing branches

Figure 3.83

Trang 46

(a) This is a planar circuit because it can be redrawn as shown below,

Trang 47

Rework Prob 3.5 using mesh analysis

Trang 48

Rework Prob 3.6 using mesh analysis

Chapter 3, Problem 6

Use nodal analysis to obtain v0 in the circuit in Fig 3.55

Figure 3.55

Trang 49

I 4 3

3 5 5

6

, 11 4 3

3 5

3 6

6 5

= Δ

, 11

Δ

=

i1 = -I1 = -9/11 = -0.8181 A, i2 = I1 – I2 = 10/11 = 1.4545 A

vo = 6i2 = 6x1.4545 = 8.727 V

Trang 50

Rework Prob 3.8 using mesh analysis

Using (1), (2), and (3) we get i1 = -5/9

Therefore, we get v0 = -2i 1 = -2(-5/9) = 1.1111 volts

Trang 51

24 V

+ _ 9 V

1 Ω

4 Ω

2 A

Trang 52

1(I2–I1) + 2(I2–I4) + 9 + 4I2 = 0

I I 1 1 0

6 6 2

1 0 7

432

We can now use MATLAB to solve the problem

>> Z=[7,0,-1;-2,6,6;0,-1,0]

Z =

7 0 -1 -2 6 6

0 -1 0

>> V=[-11,20,4]'

V = -11

20

4

>> I=inv(Z)*V

I = -0.5500 -4.0000 7.1500

Io = I1 – I2 = –2 – 4 = –6 A

Check using the super mesh (equation (3)): 1.1 – 24 + 42.9 = 20!

Trang 53

Determine the mesh currents i1 and i2 in the circuit shown in Fig 3.85

Figure 3.85

Chapter 3, Solution 39

For mesh 1,

0 6 10 2

10 − + 1 − 2 =

But Ix = I1 − I2 Hence,

212

12

A, 8

I

Trang 54

For the bridge network in Fig 3.86, find Io using mesh analysis

0 = -4i1 – 2i2 + 10i3 0 = -2i1 – i2 + 5i3 (3)

Solving (1), (2), and (3), we obtain,

io = i1 = 4.286 mA

Trang 55

Apply mesh analysis to find io in Fig 3.87

Figure 3.87

Trang 56

i i 6 1 0

1 7 2

0 1 6

3 2 1

, 234 6

1 0

1 7 2

0 1 6

1 8 2

0 3 6

Δ

38 2

1 0

8 7 2

3 1 6

At node 0, i + i2 = i3 or i = i3 – i2 =

234

240 38

2 3

= Δ

Δ

− Δ

= 1.188 A

Trang 57

Determine the mesh currents in the circuit of Fig 3.88

Figure 3.88

Chapter 3, Solution 42

For mesh 1,

(1) 2

1 2

2 1

3 1

2 2

40

0

40 100

30

0 30

50

3 2 1

40 0

48 01

B A

I

i.e I1 = 0.48 A, I2 = 0.4 A, I3 = 0.44 A

Trang 58

Use mesh analysis to find vab and io in the circuit in Fig 3.89

Trang 59

Use mesh analysis to obtain io in the circuit of Fig 3.90

Solving (1) to (3), i1 = -3.067, i3 = -1.3333; io = i1 – i3 = -1.7333 A

Trang 60

Find current i in the circuit in Fig 3.91

For the supermesh, 6i3 + 14i4 – 2i1 – 6i2= 0 (3) But i4 – i3 = 4 which leads to i4 = i3 + 4 (4)

Solving (1) to (4) by elimination gives i = i1 = 8.561 A

Trang 61

Calculate the mesh currents i1 and i2 in Fig 3.92

Figure 3.92

Chapter 3, Solution 46

For loop 1,

12 8 11 0

8

77 i2 − i2 = ⎯ ⎯→ i2= A and i1 = i 72 = 1 217 A

Trang 62

Rework Prob 3.19 using mesh analysis

Chapter 3, Problem 3.19

Use nodal analysis to find V1, V2, and V3 in the circuit in Fig 3.68

Figure 3.68

Trang 63

First, transform the current sources as shown below

2

4

2 7

1

4 1

7

3 2 1

Using MATLAB,

8667 1 , 0333 0 , 5 2 8667

1

0333 0

2

3 2

I B

A

I

But

V 10 4 20 4

20

1 1

1 = − V ⎯ ⎯→ V = − I =

I

V 933 4 ) (

8 12 8

12

2 3

3

2 = V − ⎯ ⎯→ V = + I =

Trang 64

Determine the current through the 10-kΩ resistor in the circuit in Fig 3.93 using mesh analysis

Figure 3.93

Trang 65

We apply mesh analysis and let the mesh currents be in mA

3 1

4 1 − 2 − 3 + 4 =

Putting (1) to (4) in matrix form gives

B AI

I I I

14 5 2

4

5 15 10

0

2 10 13

1

4 0 1

5

4 3 2 1

087 8

217 7

Trang 66

Find vo and io in the circuit of Fig 3.94

Figure 3.94

Trang 67

At node 0, i2 – i1 = 2i0 and i0 = -i1 which leads to i2 = -i1 (2)

For loop 3, -i1 –2i2 + 6i3 = 0 which leads to 6i3 = -i1 (3) Solving (1) to (3), i1 = (-32/3)A, i2 = (32/3)A, i3 = (16/9)A

i0 = -i1 = 10.667 A, from fig (b), v0 = i3-3i1 = (16/9) + 32 = 33.78 V

Trang 68

Use mesh analysis to find the current io in the circuit in Fig 3.95

For loop 1, 16i1 – 10i2 – 2i3 = 0 which leads to 8i1 – 5i2 – i3 = 0 (1)

For the supermesh, -60 + 10i2 – 10i1 + 10i3 – 2i1 = 0

Also, 3i0 = i3 – i2 and i0 = i1 which leads to 3i1 = i3 – i2 (3) Solving (1), (2), and (3), we obtain i1 = 1.731 and i0 = i1 = 1.731 A

Trang 69

Apply mesh analysis to find vo in the circuit in Fig 3.96

Trang 70

Use mesh analysis to find i1, i2, and i3 in the circuit of Fig 3.97

Figure 3.97

Trang 71

+

V S

+ – 2V 0

i1 = 3.5 A, i2 = -0.5 A, i3 = 2.5 A

Trang 72

Find the mesh currents in the circuit of Fig 3.98 using MATLAB

2 kΩ

+ _

Applying mesh analysis leads to;

–12 + 4kI1 – 3kI2 – 1kI3 = 0 (1)

–3kI1 + 7kI2 – 4kI4 = 0

Trang 73

I I I

I k 16 6 0 0

6 15 0 1

0 0 7 3

0 1 3 4

5321

3 mA –2.423 mA

Trang 74

Find the mesh currents i1, i2, and i3 in the circuit in Fig 3.99

Figure 3.99

Chapter 3, Solution 54

Let the mesh currents be in mA For mesh 1,

2 1 2

2 1 3

Using MATLAB,

mA 25 10 ,

mA 5 8 , mA 25 5 25

10

5 8

25 5

3 2

I B

A

I

Trang 75

In the circuit of Fig 3.100, solve for i1, i2, and i3

Figure 3.100

Trang 76

For mesh 4, 12(I4 – I1) + 4(I4 – I3) – 8 = 0 (2)

For the supermesh 6(I2 – I1) + 10 + 2I3 + 4(I3 – I4) = 0

Trang 77

Determine v1 and v2 in the circuit of Fig 3.101

Figure 3.101

Trang 78

For loop 1, 12 = 4i1 – 2i2 – 2i3 which leads to 6 = 2i1 – i2 – i3 (1)

For loop 2, 0 = 6i2 –2i1 – 2 i3 which leads to 0 = -i1 + 3i2 – i3 (2)

For loop 3, 0 = 6i3 – 2i1 – 2i2 which leads to 0 = -i1 – i2 + 3i3 (3)

In matrix form (1), (2), and (3) become,

1 3 1

1 1 2

3 2 1

3 1 1

1 3 1

1 1 2

1 3 1

1 6 2

0 3 1

6 1 2

Trang 79

In the circuit in Fig 3.102, find the values of R, V1, and V2 given that io = 18 mA

Figure 3.102

Chapter 3, Solution 57

Assume R is in kilo-ohms

V V

V V

mA x k

V2 = 4 Ω 18 = 72 , 1 = 100 − 2 = 100 − 72 = 28

Current through R is

R R R

i V i

R

3

3 28 3

Trang 80

Find i1, i2, and i3 the circuit in Fig 3.103

For loop 1, 120 + 40i1 – 10i2 = 0, which leads to -12 = 4i1 – i2 (1)

For loop 2, 50i2 – 10i1 – 10i3 = 0, which leads to -i1 + 5i2 – i3 = 0 (2)

For loop 3, -120 – 10i2 + 40i3 = 0, which leads to 12 = -i2 + 4i3 (3)

Solving (1), (2), and (3), we get, i1 = -3A, i2 = 0, and i3 = 3A

Trang 81

Rework Prob 3.30 using mesh analysis

Chapter 3, Problem 30

Using nodal analysis, find vo and io in the circuit of Fig 3.79

Figure 3.79

Trang 82

12 3

1

32 2 3

i i

3 2 1

1 3

0

12 3

1

32 2

12 6

1

32 10 3

6 3 1

10 2 3

Trang 83

Calculate the power dissipated in each resistor in the circuit in Fig 3.104

At node 1, (v1/1) + (0.5v1/1) = (10 – v1)/4, which leads to v1 = 10/7

At node 2, (0.5v1/1) + ((10 – v2)/8) = v2/2 which leads to v2 = 22/7

P1Ω = (v1)2/1 = 2.041 watts, P2Ω = (v2)2/2 = 4.939 watts

P4Ω = (10 – v1)2/4 = 18.38 watts, P8Ω = (10 – v2)2/8 = 5.88 watts

Trang 84

Calculate the current gain io/is in the circuit of Fig 3.105

At node 1, is = (v1/30) + ((v1 – v2)/20) which leads to 60is = 5v1 – 3v2 (1)

But v2 = -5v0 and v0 = v1 which leads to v2 = -5v1

Hence, 60is = 5v1 + 15v1 = 20v1 which leads to v1 = 3is, v2 = -15is

i0 = v2/50 = -15is/50 which leads to i0/is = -15/50 = –0.3

Trang 85

Find the mesh currents i1, i2, and i3 in the network of Fig 3.106

We have a supermesh Let all R be in kΩ, i in mA, and v in volts

For the supermesh, -100 +4i1 + 8i2 + 2i3 + 40 = 0 or 30 = 2i1 + 4i2 + i3 (1)

Solving (1), (2), and (3), we get i1 = 2 mA, i2 = 6 mA, and i3 = 2 mA

Trang 86

Find vx, and ix in the circuit shown in Fig 3.107

At node A, i1 + 3 + (vx/4) = i2, but vx = 2(i1 – i2), hence, i1 + 2 = i2 (2)

Solving (1) and (2) gives i1 = 2.105 A and i2 = 4.105 A

vx = 2(i1 – i2) = –4 volts and ix = i2 – 2 = 2.105 amp

Trang 87

Find vo, and io in the circuit of Fig 3.108

Figure 3.108

Trang 88

For mesh 2, 20i2 – 10i1 + 4i0 = 0 (1)

But at node A, io = i1 – i2 so that (1) becomes i1 = (16/6)i2 (2) For the supermesh, -100 + 50i1 + 10(i1 – i2) – 4i0 + 40i3 = 0

Trang 89

Use MATLAB to solve for the mesh currents in the circuit of Fig 3.109

1 6 12

–I1 – I2 + 7I4 – 2I5 – 6 = 0 or

6 = –I1 – I2 + 7I4 – 2I5 (4) For mesh 5,

–I2 – I3 – 2I4 + 8I5 – 10 = 0 or

5 4 3

10 = − III + I (5)

Trang 90

B AI 10

6 9 0 12

I I I I I

8 2 1 1

0

2 7 0

1

1

1 0 15

8

0

1 1 8 16

6

0 1 0

6

12

54321

Trang 91

Write a set of mesh equations for the circuit in Fig 3.110 Use MATLAB to determine the mesh currents

+ _

+ _

8 Ω

10 Ω

+ _

I5

32 V

8 Ω

Trang 92

18 4 0

6

0

4 12 4 2

2

0 4 18

0

6

6 2 0

30

4

0 2 6 4

Trang 93

Obtain the node-voltage equations for the circuit in Fig 3.111 by inspection Then solve

V 3 2 V 5 0 5 0 0

5 0 95 0 25 0

0 25 0 35

Trang 94

equation

Vo = V2 – V3 Substituting this back into the matrix equation, the first equation becomes,

2 V 5 0 5 0 0

5 0 95 0 25 0

3 25 3 35 0

Now we can use MATLAB to solve for V

>> Y=[0.35,-3.25,3;-0.25,0.95,-0.5;0,-0.5,0.5]

Y = 0.3500 -3.2500 3.0000 -0.2500 0.9500 -0.5000

0 -0.5000 0.5000

>> I=[-2,0,6]'

I = -2

0

6

>> V=inv(Y)*I

V = -164.2105 -77.8947 -65.8947

Vo = V2 – V3 = –77.89 + 65.89 = –12 V

Let us now do a quick check at node 1

–3(–12) + 0.1(–164.21) + 0.25(–164.21+77.89) + 2 =

+36 – 16.421 – 21.58 + 2 = –0.001; answer checks!

Ngày đăng: 13/09/2018, 13:31

TỪ KHÓA LIÊN QUAN

w